

Practices for Lesson 5

Practices Overview

In these practices, you will use Java interfaces and apply design patterns.

Practice 5-1: Summary Level: Implementing an Interface

Overview

In this practice, you will create an interface and implement that interface.

Assumptions

You have reviewed the interface section of this lesson.

Summary

You have been given a project that contains an abstract class named Animal. You create a

hierarchy of animals that is rooted in the Animal class. Several of the animal classes

implement an interface named Pet, which you will create.

Tasks

1. Open the Pet project as the main project.

a. Select File > Open Project.

b. Browse to D:\labs\05\practices. (or you other directory)

c. Select Pet and select the “Open as Main Project” check box.

d. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see text displayed in the output window.

4. Review the Animal and Spider classes.

a. Open the Animal.java file (under the com.example package).

b. Review the abstract Animal class. You will extend this class.

c. Open the Spider.java file (under the com.example package).

d. The Spider class is an example of extending the Animal class.

5. Create a new Java interface: Pet in the com.example package.

6. Code the Pet interface. This interface should include three method signatures:

 public String getName();

 public void setName(String name);

 public void play();

7. Create a new Java class: Fish in the com.example package.

8. Code the Fish class.

a. This class should:

 Extend the Animal class

 Implement the Pet interface

b. Complete this class by creating:

 A String field called name

 Getter and setter methods for the name field

 A no-argument constructor that passes a value of 0 to the parent constructor

 A play() method that prints out "Just keep swimming."

 An eat() method that prints out "Fish eat pond scum."

 A walk() method that overrides the Animal class walk method. It should first call
the super class walk method, and then print "Fish, of course, can't walk;
they swim."

9. Create a new Java class: Cat in the com.example package.

10. Code the Cat class.

a. This class should:

 Extend the Animal class

 Implement the Pet interface

b. Complete this class by creating:

 A String field called name

 Getter and setter methods for the name field

 A constructor that receives a name String and passes a value of 4 to the parent
constructor

 A no-argument constructor that passes a value of "Fluffy" to the other constructor
in this class

 A play() method that prints out name + " likes to play with string."

 An eat() method that prints out "Cats like to eat spiders and fish."

11. Modify the PetMain class.

a. Open the PetMain.java file (under the com.example package).

b. Review the main method. You should see the following lines of code:

Animal a;

//test a spider with a spider reference

Spider s = new Spider();

s.eat();

s.walk();

//test a spider with an animal reference

a = new Spider();

a.eat();

a.walk();

c. Add additional lines of code to test the Fish and Cat classes that you created.

 Try using every constructor

 Experiment with using every reference type possible and determine which methods
can be called with each type of reference. Use a Pet reference while testing the

Fish and Cat classes.

d. Implement and test the playWithAnimal(Animal a) method.

 Determine whether the argument implements the Pet interface. If so, cast the

reference to a Pet and invoke the play method. If not, print a message of "Danger!
Wild Animal".

 Call the playWithAnimal(Animal a) method from within main, passing in each

type of animal.

12. Run the project. You should see text displayed in the output window.

Practice 5-1: Detailed Level: Implementing an Interface

Overview

In this practice, you will create an interface and implement that interface.

Assumptions

You have reviewed the interface section of this lesson.

Summary

You have been given a project that contains an abstract class named Animal. You create a

hierarchy of animals that is rooted in the Animal class. Several of the animal classes

implement an interface named Pet, which you will create.

Tasks

1. Open the Pet project as the main project.

a. Select File > Open Project.

a. Browse to D:\labs\05\practices. (or you other directory)

b. Select Pet and select the "Open as Main Project" check box.

c. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see text displayed in the output window.

4. Review the Animal and Spider classes.

a. Open the Animal.java file (under the com.example package).

b. Review the abstract Animal class. You will extend this class.

c. Open the Spider.java file (under the com.example package).

d. The Spider class is an example of extending the Animal class.

5. Create a new Java interface: Pet in the com.example package.

6. Code the Pet interface. This interface should include three method signatures:

public String getName();

public void setName(String name);

public void play();

7. Create a new Java class: Fish in the com.example package.

8. Code the Fish class.

a. This class should extend the Animal class and implement the Pet interface.

public class Fish extends Animal implements Pet

b. Complete this class by creating:

 A String field called name.

private String name;

 Getter and setter methods for the name field.

@Override

public String getName() {

return name;

}

@Override

public void setName(String name) {

this.name = name;

}

 A no-argument constructor that passes a value of 0 to the parent constructor.

public Fish() {

super(0);

}

 A play() method that prints out "Just keep swimming."

@Override

public void play() {

System.out.println("Just keep swimming.");

}

 An eat() method that prints out "Fish eat pond scum."

@Override

public void eat() {

System.out.println("Fish eat pond scum.");

}

 A walk() method that overrides the Animal class walk method. It should first call
the super class walk method, and then print " Fish, of course, can't walk;
they swim."

@Override

public void walk() {

super.walk();

System.out.println("Fish, of course, can't walk; they

swim.");

}

9. Create a new Java class: Cat in the com.example package.

10. Code the Cat class.

a. This class should extend the Animal class and implement the Pet interface.

public class Cat extends Animal implements Pet

b. Complete this class by creating:

 A String field called name.

 Getter and setter methods for the name field.

 A constructor that receives a name String and passes a value of 4 to the parent
constructor.

public Cat(String name) {

super(4);

this.name = name;

}

 A no-argument constructor that passes a value of "Fluffy" to the other constructor
in this class.

public Cat() {

this("Fluffy");

}

 A play() method that prints out name + " likes to play with string."

@Override

public void play() {

System.out.println(name + " likes to play with string.");

}

 An eat() method that prints out "Cats like to eat spiders and fish."

11. Modify the PetMain class.

a. Open the PetMain.java file (under the com.example package).

b. Review the main method. You should see the following lines of code:

Animal a;

//test a spider with a spider reference

Spider s = new Spider();

s.eat();

s.walk();

//test a spider with an animal reference

a = new Spider();

a.eat();

a.walk();

c. Add additional lines of code to test the Fish and Cat classes that you created.

 Try using every constructor

 Experiment with using every reference type possible and determine which methods
can be called with each type of reference. Use a Pet reference while testing the

Fish and Cat classes.

Pet p;

Cat c = new Cat("Tom");

c.eat();

c.walk();

c.play();

a = new Cat();

a.eat();

a.walk();

p = new Cat();

p.setName("Mr. Whiskers");

p.play();

Fish f = new Fish();

f.setName("Guppy");

f.eat();

f.walk();

f.play();

a = new Fish();

a.eat();

a.walk();

d.

Implement and test the playWithAnimal(Animal a) method.

 Determine whether the argument implements the Pet interface. If so, cast the

reference to a Pet and invoke the play method. If not, print a message of "Danger!
Wild Animal".

public static void playWithAnimal(Animal a) {

if(a instanceof Pet) {

Pet p = (Pet)a;

p.play();

} else {

System.out.println("Danger! Wild Animal");

}

}

 Call the playWithAnimal(Animal a) method at the end of the main method,
passing in each type of animal.

playWithAnimal(s);

playWithAnimal(c);

playWithAnimal(f);

12. Run the project. You should see text displayed in the output window.

Practice 5-2: Summary Level: Applying the DAO Pattern

Overview

In this practice, you will take an existing application and refactor the code to implement the data
access object (DAO) design pattern.

Assumptions

You have reviewed the DAO sections of this lesson.

Summary

You have been given a project that implements the logic for a human resources application. The
application allows for creating, retrieving, updating, deleting, and listing Employee objects.

Employee objects are currently stored in-memory using an array. You must move any code

related to the persistence of Employee objects out of the Employee class. In later practices,
you will supply alternative persistence implementations. In the future, this application should
require no modification when substituting the persistence implementation.

Tasks

1. Open the EmployeeMemoryDAO project as the main project.

a. Select File > Open Project.

b. Browse to D:\labs\05\practices. (or you other directory)

b. Select EmployeeMemoryDAO and select the "Open as Main Project" check box.

c. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see a menu. Test all the menu choices.

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

Note: When entering dates, they should be in the form of: Nov 26, 1976

Employee IDs should be in the range of 0 through 9.

4. Review the Employee class.

a. Open the Employee.java file (under the com.example.model package).

b. Find the array used to store employees.

private static Employee[] employeeArray = new Employee[10];

Note: The employee’s id is used as the array index.

c. Locate any methods that utilize the employeeArray field. These methods are used to

persist employee objects.

5. Create a new com.example.dao package.

6. Create an EmployeeDAO interface in the com.example.dao package.

7. Complete the EmployeeDAO interface with the following method signatures.

public void add(Employee emp);

public void update(Employee emp);

public void delete(int id);

public Employee findById(int id);

public Employee[] getAllEmployees();

8. Create an EmployeeDAOMemoryImpl class in the com.example.dao package.

9. Complete the EmployeeDAOMemoryImpl class.

a. Move the employeeArray and any related methods from the Employee class to the

EmployeeDAOMemoryImpl class.

b. Implement the EmployeeDAO interface. Modify the methods that you moved in the
previous step to become the methods required by the EmployeeDAO interface.

Hint: In this DAO, the add and update methods will function the same.

10. Update the EmployeeTestInteractive class.

a. The EmployeeTestInteractive class no longer compiles, review the errors.

b. Create an EmployeeDAO instance in the main method. Use the EmployeeDAO
interface as the reference type.

c. Modify any lines containing errors to use the EmployeeDAO instance.

11. Run the project. You should see a menu. Test all the menu choices.

Note: While functional, the EmployeeTestInteractive class is still tied to a specific

type of DAO because it references the EmployeeDAO implementing class by name.

EmployeeDAO dao = new EmployeeDAOMemoryImpl();

In the following steps, you remove this tight coupling from the

EmployeeTestInteractive class by creating a DAO factory.

12. Modify the EmployeDAOMemoryImpl interface.

 Add a protected, no-argument constructor.

13. Create an EmployeeDAOFactory class in the com.example.dao package.

14. Complete the EmployeeDAOFactory class.

 Add a method that returns an EmployeeDAO.

public EmployeeDAO createEmployeeDAO() {

return new EmployeeDAOMemoryImpl();

}

15. Update the EmployeeTestInteractive class to use the EmployeeDAOFactory class.

a. Obtain an EmployeeDAOFactory instance in the main method.

b. Obtain an EmployeeDAO instance using the factory created in the previous step.

16. Run the project. You should see a menu. Test all the menu choices.

In the future, you will be able to change the persistence mechanism to use a database
without changing the reference types or method calls used in the
EmployeeTestInteractive class.

Practice 5-2: Detailed Level: Applying the DAO Pattern

Overview

In this practice, you will take an existing application and refactor the code to implement the data
access object (DAO) design pattern.

Assumptions

You have reviewed the DAO sections of this lesson.

Summary

You have been given a project that implements the logic for a human resources application. The
application allows for creating, retrieving, updating, deleting, and listing Employee objects.

Employee objects are currently stored in-memory using an array. You must move any code

related to the persistence of Employee objects out of the Employee class. In later practices,
you will supply alternative persistence implementations. In the future, this application should
require no modification when substituting the persistence implementation.

Tasks

1. Open the EmployeeMemoryDAO project as the main project.

a. Select File > Open Project.

c. Browse to D:\labs\05\practices. (or you other directory)

b. Select EmployeeMemoryDAO and select the "Open as Main Project" check box.

c. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see a menu. Test all the menu choices.

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

Note: When entering dates, they should be in the form of: Nov 26, 1976

Employee IDs should be in the range of 0 through 9.

4. Review the Employee class.

a. Open the Employee.java file (under the com.example.model package).

b. Find the array used to store employees. You will relocate this field in a subsequent
step.

private static Employee[] employeeArray = new Employee[10];

Note: The employee’s id is used as the array index.

c. Locate the save, delete, findById, and getAllEmployees methods that utilize

the employeeArray field. These methods are used to persist employee objects. You
will relocate these methods in a subsequent step.

5. Create a new com.example.dao package.

6. Create an EmployeeDAO interface in the com.example.dao package.

7. Complete the EmployeeDAO interface with the following method signatures. Add import
statements as needed.

public void add(Employee emp);

public void update(Employee emp);

public void delete(int id);

public Employee findById(int id);

public Employee[] getAllEmployees();

8. Create an EmployeeDAOMemoryImpl class in the com.example.dao package.

9. Complete the EmployeeDAOMemoryImpl class.

a. Move the employeeArray and any related methods from the Employee class to the

EmployeeDAOMemoryImpl class:

b. Implement the EmployeeDAO interface. Modify the methods that you moved in the
previous step to become the methods required by the EmployeeDAO interface.

 The save method becomes the add method and is modified to have an Employee
parameter.

 The save method is duplicated to become the update method and is modified to

have an Employee parameter.

 The delete method is modified to have an id parameter.

 The findById method is no longer static.

 The getAllEmployees method is no longer static.

public class EmployeeDAOMemoryImpl implements EmployeeDAO {

private static Employee[] employeeArray = new Employee[10];

public void add(Employee emp) {

employeeArray[emp.getId()] = emp;

}

public void update(Employee emp) {

employeeArray[emp.getId()] = emp;

}

public void delete(int id) {

employeeArray[id] = null;

}

public Employee findById(int id) {

return employeeArray[id];

}

public Employee[] getAllEmployees() {

List<Employee> emps = new ArrayList<>();

for (Employee e : employeeArray) {

if (e != null) {

emps.add(e);

}

}

return emps.toArray(new Employee[0]);

}

}

10. Update the EmployeeTestInteractive class.

a. The EmployeeTestInteractive class no longer compiles, review the errors.

b. Create an EmployeeDAO instance in the main method. Use the EmployeeDAO
interface as the reference type. Replace the line:

//TODO create dao

With:

EmployeeDAO dao = new EmployeeDAOMemoryImpl();

c.

Modify any lines containing errors to use the EmployeeDAO instance. For example:

case 'C':

emp = inputEmployee(in);

dao.add(emp);

System.out.println("Successfully added Employee Record: " +

emp.getId());

System.out.println("\n\nCreated " + emp);

break;

Note: You can also remove the now unnecessary finding of employee object that is

present when deleting an employee.

// Find this Employee record

emp = null;

emp = Employee.findById(id);

if (emp == null) {

System.out.println("\n\nEmployee " + id + " not found");

break;

}

11. Run the project. You should see a menu. Test all the menu choices.

Note: While functional, the EmployeeTestInteractive class is still tied to a specific

type of DAO because it references the EmployeeDAO implementing class by name.

EmployeeDAO dao = new EmployeeDAOMemoryImpl();

In the following steps, you remove this tight coupling from the

EmployeeTestInteractive class by creating a DAO factory.

12. Modify the EmployeDAOMemoryImpl interface.

a. Add a protected, no-argument constructor.

EmployeeDAOMemoryImpl() {

}

13. Create an EmployeeDAOFactory class in the com.example.dao package.

14. Complete the EmployeeDAOFactory class.

 Add a method that returns an EmployeeDAO.

public class EmployeeDAOFactory {

public EmployeeDAO createEmployeeDAO() {

return new EmployeeDAOMemoryImpl();

}

}

15. Update the EmployeeTestInteractive class to use the EmployeeDAOFactory class.

a. Obtain an EmployeeDAOFactory instance in the main method. Replace the line:

//TODO create factory

With:

EmployeeDAOFactory factory = new EmployeeDAOFactory();

b. Obtain an EmployeeDAO instance using the factory created in the previous step.
Replace the line:

EmployeeDAO dao = new EmployeeDAOMemoryImpl();

With:

EmployeeDAO dao = factory.createEmployeeDAO();

c. Fix any imports.

16. Run the project. You should see a menu. Test all the menu choices.

In the future, you will be able to change the persistence mechanism to use a database
without changing the reference types or method calls used in the

EmployeeTestInteractive class. Notice that none of the *MemoryImpl classes are

used by name from within the EmployeeTestInteractive class.

(Optional) Practice 5-3: Implementing Composition

Overview

In this practice, you will take an existing application and refactor it to make use of composition.

Assumptions

You have reviewed the interface and composition sections of this lesson.

Summary

You have been given a small project that represents a hierarchy of animals that is rooted in the
Animal class. Several of the animal classes implement an interface named Pet. This project is

a completed implementation of the “Implementing an Interface” practice.

There are some potential problems with the design of the existing project. If you wanted to

restrict a pet’s name to less than 20 characters how many classes would you have to modify?

Would this problem become worse with the addition of new animals?

If some types of animals, such as Fish, cannot walk, should they have a walk method?

Tasks

1. Open the PetComposition project as the main project.

a. Select File > Open Project.

d. Browse to D:\labs\05\practices. (or you other directory)

b. Select PetComposition and select the "Open as Main Project" check box.

c. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see output in the output window.

4. Centralize all “name” functionality.

All pets can be named, but you may want to give names to objects that cannot play. For
instance, you could name a volleyball “Wilson.” Your design should reflect this.

a. Create a Nameable interface (under the com.example package).

b. Complete the Nameable interface with setName and getName method signatures.

public interface Nameable {

public void setName(String name);

public String getName();

}

c. Create a NameableImpl class (under the com.example package).

d.

Complete the NameableImpl class. It should:

 Implement the Nameable interface

 Contain a private String field called name

 Only accept names less than 20 characters in length

 Print "Name too long" if a name is too long

e. Modify the Pet interface.

 Extend the Nameable interface.

 Remove the getName and setName method signatures (they are inherited now).

f. Modify the Fish and Cat classes to use composition.

 Delete the name field.

 Delete the existing getName and setName methods.

 Add a new Nameable field.

private Nameable nameable = new NameableImpl();

 Add getName and setName methods that delegate to the Nameable field.

Hint: Position the cursor within the curly braces for the class. Open the Source

menu, select Insert Code, select Delegate Method, select the Nameable check

box, and click the Generate button.

 Replace any use of the old name field with calls to the getName and setName
methods.

5. Centralize all walking functionality.

Only some animal can walk. Remove the walk method from the Animal class and use

interfaces and composition to facilitate walking.

a. Create an Ambulatory interface (under the com.example package).

b. Complete the Ambulatory interface with the walk method signature.

public interface Ambulatory {

public void walk();

}

c. Create an AmbulatoryImpl class (under the com.example package).

d. Complete the AmbulatoryImpl class. It should:

 Implement the Ambulatory interface

 Contain a private int field called legs

 Contain a single argument constructor that receives an int value to be stored in the

legs field

 Contain a walk method

public void walk() {

System.out.println("This animal walks on " + legs + "

legs.");

}

e. Delete the walk method from the Fish class.

f. Modify the Spider and Cat classes to use composition.

 Add a new Ambulatory field.

private Ambulatory ambulatory;

 Add a walk method that delegates to the Ambulatory field.

Hint: Position the cursor within the curly braces for the class. Open the Source

menu, select Insert Code, select Delegate Method, select the Ambulatory check

box, and click the Generate button.

g. Initialize the ambulatory field within the Spider and Cat constructors. For example:

public Spider() {

ambulatory = new AmbulatoryImpl(8);

}

6. Modify the PetMain class to test the walk method. The walk method can only be called
on Spider, Cat, or Ambulatory references.

