

Practices for Lesson 3

Practices Overview

In these practices, you will override methods, including the toString method in the Object

class. You will also create a method in a class that uses the instanceof operator to determine

which object was passed to the method.

Practice 3-1: Summary Level: Overriding Methods and Applying

Polymorphism

Overview

In this practice, you will override the toString method of the Object class in the Employee

class and in the Manager class. You will create an EmployeeStockPlan class with a

grantStock method that uses the instanceof operator to determine how much stock to

grant based on the employee type.

Assumptions

Tasks

1. Open the EmployeePractice project in the practices directory.

2. Edit the Employee class to override the toString() method from the Object class.

Object’s toString method returns a String.

a. Add a return statement that returns a string that includes the employee ID, name,

Social Security number, and a salary as a formatted string, with each line separated

with a newline character ("\n").

b. To format the double salary, use the following:

NumberFormat.getCurrencyInstance().format(getSalary())

c. Fix any missing import statements.

d. Save the class.

3. Override the toString() method in the Manager class to include the deptName field

value. Separate this string from the Employee string with a newline character.

Note the Green circle icon with the “o” in the center beside the method signature in the

Manager class. This indicates that NetBeans is aware that this method overrides the

method from the parent class, Employee. Hold the cursor over the icon to read what this

icon represents:

Click the icon, and NetBeans will open the Employee class and position the view to the

toString() method.

4. (Optional) Override the toString() method in the Director class as well, to display all

the fields of a Director and the available budget.

5. Create a new class called EmployeeStockPlan in the package

com.example.business. This class will include a single method, grantStock, which

takes an Employee object as a parameter and returns an integer number of stock options

based on the employee type:

Employee Type Number of Stock Options

Director 1000

Manager 100

All other Employees 10

a. Add a grantStock method that takes an Employee object reference as a parameter

and returns an integer

b. In the method body, determine what employee type was passed in using the

instanceof keyword and return the appropriate number of stock options based on

that type.

c. Resolve any missing import statements.

d. Save the EmployeeStockPlan class.

6. Modify the EmployeeTest class. Replace the four print statements in the

printEmployee method with a single print statement that uses the toString method

that you created.

7. Overload the printEmployee method to take a second parameter,

EmployeeStockPlan, and print out the number of stock options that this employee will

receive.

a. Above the printEmployee method calls in the main method, create an instance of

the EmployeeStockPlan and pass that instance to each of the printEmployee

methods.

b. The new printEmployee method should call the first printEmployee method and

the number of stocks granted to this employee:

printEmployee (emp);

System.out.println("Stock Options: " + esp.grantStock(emp));

8. Save the EmployeeTest class and run the application. You should see output for each

employee that includes the number of Stock Options, such as:

Employee id: 101

Employee name: Jane Smith

Employee Soc Sec #: 012-34-5678

Employee salary: $120,345.27

Stock Options: 10

9. It would be nice to know what type of employee each employee is. Add the following to your
original printEmployee method above the print statement that prints the employee data

fields:

System.out.println("Employee type: " +

emp.getClass().getSimpleName());

This will print out the simple name of the class (Manager, Engineer, etc). The output of

the first employee record should now look like this:

Employee type: Engineer

Employee id: 101

Employee name: Jane Smith

Employee Soc Sec #: 012-34-5678

Employee salary: $120,345.27

Stock Options: 10

Practice 3-1: Detailed Level: Overriding Methods and Applying

Polymorphism

Overview

In this practice, you will override the toString method of the Object class in the Employee

class and in the Manager class. You will create an EmployeeStockPlan class with a

grantStock method that uses the instanceof operator to determine how much stock to

grant based on the employee type.

Assumptions

Tasks

1. Open the EmployeePractice project in the practices directory.

a. Select File > Open Project.

b. Browse to D:\labs\03\practices (or your other directory).

c. Select EmployeePractice and click Open Project.

2. Edit the Employee class to override the toString() method from the Object class.

Object's toString method returns a String.

a. Add the toString method to the Employee class with the following signature:

public String toString() {

b. Add a return statement that returns a string that includes the employee information:

ID, name, Social Security number, and a formatted salary like this:

return "Employee ID: " + getEmpId() + "\n" +

"Employee Name: " + getName() + "\n" +

"Employee SSN: " + getSsn() + "\n" +

"Employee Salary: " +

NumberFormat.getCurrencyInstance().format(getSalary());

c. Save the Employee class.

3. Override the toString method in the Manager class to include the deptName field value.

a. Open the Manager class.

b. Add a toString method with the same signature as the Employee toString
method:

public String toString() {

The toString method in the Manager class overrides the toString method inherited

from the Employee class.

c. Call the parent class method by using the super keyword and add the department

name:

return super.toString() + "\nDepartment: " + getDeptName();

Note the Green circle icon with the “o” in the center beside the method signature in the

Manager class. This indicates that NetBeans is aware that this method overrides the

method from the parent class, Employee. Hold the cursor over the icon to read what this
icon represents:

Click the icon, and NetBeans will open the Employee class and position the view to the

toString() method.

d. Save the Manager class.

4. (Optional) Override the toString method in the Director class as well, to display all the

fields of a director and the available budget.

5. Create a new class called EmployeeStockPlan in the package

com.example.business. This class will include a single method, grantStock, which

takes an Employee object as a parameter and returns an integer number of stock options

based on the employee type:

Employee Type Number of Stock Options

Director 1000

Manager 100

All other Employees 10

a. Create the new package and class in one step by right-clicking Source Package, and
then selecting New > Java Class.

b. Enter EmployeeStockPlan as the Class Name and com.example.business as

the Package and click Finish.

c. In the new class, add fields to the class to define the stock levels, like this:

private final int employeeShares = 10;

private final int managerShares = 100;

private final int directorShares = 1000;

d. Add a grantStock method that takes an Employee object reference as a parameter

and returns an integer:

public int grantStock(Employee emp) {

e. In the method body, determine what employee type was passed in using the

instanceof keyword and return the appropriate number of stock options based on

that type. Your code might look like this:

// Stock is granted based on the employee type

if (emp instanceof Director) {

return directorShares;

} else {

if (emp instanceof Manager) {

return managerShares;

} else {

return employeeShares;

}

}

f. Resolve any missing import statements.

g. Save the EmployeeStockPlan class.

6. Modify the EmployeeTest class. Replace the four print statements in the

printEmployee method with a single print statement that uses the toString method

that you created.

a. Replace these lines:

System.out.println("Employee id: " + emp.getEmpId());

System.out.println("Employee name: " + emp.getName());

System.out.println("Employee Soc Sec #: " + emp.getSsn());

System.out.println("Employee salary: " +

NumberFormat.getCurrencyInstance().format((double)

emp.getSalary()));

b. With one line that uses the toString() method:

System.out.println(emp);

7. Overload the printEmployee method to take a second parameter,

EmployeeStockPlan, and print out the number of stock options that this employee will

receive.

a. Create another printEmployee method that takes an instance of the

EmployeeStockPlan class:

public static void printEmployee(Employee emp, EmployeeStockPlan

esp) {

b. This method first calls the original printEmployee method:

printEmployee(emp);

c. Add a print statement to print out the number of stock options that the employee is
entitled to:

System.out.println("Stock Options: " +

esp.grantStock(emp));

d. Above the printEmployee method calls in the main method, create an instance of

the EmployeeStockPlan and pass that instance to each of the printEmployee

methods:

EmployeeStockPlan esp = new EmployeeStockPlan();

printEmployee(eng, esp);

... modify the remaining printEmployee invocations

e. Resolve any missing import statements.

8. Save the EmployeeTest class and run the application. You should see output for each

employee that includes the number of Stock Options, such as:

Employee id: 101

Employee name: Jane Smith

Employee Soc Sec #: 012-34-5678

Employee salary: $120,345.27

Stock Options: 10

9. It would be nice to know what type of employee each employee is. Add the following to your

original printEmployee method above the print statement that prints the employee data

fields:

System.out.println("Employee type: " +

emp.getClass().getSimpleName());

This will print out the simple name of the class (Manager, Engineer, etc). The output of

the first employee record should now look like this:

Employee type: Engineer

Employee id: 101

Employee name: Jane Smith

Employee Soc Sec #: 012-34-5678

Employee salary: $120,345.27

Stock Options: 10

