Practices for Lesson 5

Practices Overview

In these practices, you create and manipulate Java technology objects and also create and use
String and StringBuilder objects. In the last exercise, you become familiar with the Java API
specification.

Practice 5-1: Creating and Manipulating Java Objects

Overview

In this practice, you create instances of a class and manipulate these instances in several ways.
This Practice has two sections. In the first section, you create and initialize object instances. In
the second section, you manipulate object references.

Assumptions
The Customer. java file appears in the practice folder for this lesson: L.esson05

Initializing Object Instances

A Customer class is provided for you. In this section, you create, compile, and execute a

CustomerTest class. In this test class, you create objects of the Customer class and set values

to its member fields.

1. Create a new project from existing source called Practice06. Set the Source Package
Folder to point to Lesson05. Remember to also change the Source/Binary Format
property. If you need further details, refer to Practice 1-2, Steps 3 and 4.

:Projects 4l = |:Files - Gervices
=g Practice0s
=-|g8 Source Packages

SR =l ~defaulk package>
..... [E] Customer.java

P e gis PersonTwoTest.java
+-I.g Libraries

2. Openthe customer. java file in the editor and examine its member fields and its method.
You use the field information to complete this practice.

3. Create the CustomerTest class as a “Java Main Class” type. Since this class is run
(executed) by the Java executable, it must contain a main method. The NetBeans IDE
provides the skeleton of a main class for you.

a. Right-click the Practice06 project in the Projects window and select New > Java
MainClass from the popup menu. (This is a shortcut way of creating new Java
classes.)

b. Name the class CustomerTest and click Finish.

F
® New Java Main Class Eﬂ
Steps Mame and Location
1. Choose File Type Class Marne: |Custu:umerTest |
2. Name and Location

Projeck: |PracticeDE~ |
Lacation: |Su:uuru:e Packages b |
Package: | 52 |

Created File: |D:'I,Iabs'l,lestlEu'l,CustumerTest.ja\-'a |

A warning: It is highly recommended that you do NOT place

[Finish H Cancel H Help

c. The CustomerTest class appears in the text editor.

&, CustomnerTest.java x|
RE-F- QSR P & o0 &=
=l
2 * To change this tewplate, chooze Tools | Tewplates
3 * and open the tewmplate in the editor.
4 L/
5
6 /v
':|| *
a8 * @author Administrator
R
10 public class CustomerTest |
11
1z A
13T ¥ @param args the commwand line aroaments
14 *f
15 public static vold main(3tring[] args) o
J_ET A4 TODOD code application logic here
17 B
15 i

In the main method of CustomerTest, add code to declare and initialize two instances of
the Customer class. The table below provides high-level instructions for this task. If you
need more assistance, refer to the detailed steps following the table.

Step Window/Page Description Choices or Values
a. Declare two fields of type Customer | custl
cust2
b. Initialize the two instances Use the new operator
a. Within the body of the main method, declare two fields of type Customer as follows:
Customer custl, cust2;
b. Initialize each of the variables using this syntax:

<variable name> = new <class name> () ;

Finish coding the main method as indicated in the following table. More detailed
instructions are provided below the table.

Step Window/Page Description Choices or Values
a. Assign values to the member fields Example:
Of one Of the Customer ObjeCtS custl.customerID = 1;

b. Repeat for the other Customer
object but use different values for the
fields.

C. Invoke the displayCustomerInfo | Use the object reference variable to qualify the
method of each object method as you did in step a.

a. Assign values to all of the member fields of one of the Customer objects. Use the

object reference variable to qualify the field name as shown below:

custl.customerID = 1;

Assign different values to each member field of the other Customer object.
Invoke the displayCustomerInfo method of each object. Example:

custl.displayCustomerInfo();

Click Save to compile.

Run the CustomerTest. java file. Check the output to be sure that each Customer object
displays the distinct values you assigned.

W

LA

E{%

: Qutput - Practice06 {run)

Tt

FEExEEEETFCustoner Information******+*
Customer ID: 1

Name:Mary Smith

Email: mary.swithAgmail. com

o e e e o o o e i e o o o i e o e o e e o o e
FrEErrErCustoner Information*d**r*xs
Customer ID: Z

Name: Frank Jones

Email: frank.jonesfgmail.con

b ek ek ok o

BUILDI SUCCESSFUL (total time: 0 seconds)

Al
"

Manipulating Object References
In this section, you assign the value of one object reference to another object reference.

8. Edit the main method of CustomerTest to assign one object reference to another object
reference just above the first line of code that invokes the displayCustomerInfo
method. For example (assuming that cust1 and cust2 are instances of the Customer
class):

cust2 = custl;

9. Save and run the CustomerTest.java file. Check the output of the
displayCustomerInfo methods for both objects. Both of the object references now point
to the same object in memory so both of the displayCustomerInfo method outputs
should be identical.

Al
b

: Dutput - Practice06 {run}

D> rarc

FrEFEErFCustoner Information® F+&s+s
Lis Customer ID: 1
Name:Mary Smith
%ﬁ Email: mary.swmith@gmail. com
e e e o o e e o g i e o o e i e o o o e e e o o e e e
FEREEEFEFFCustomer Information®***s***x
Customer ID: 1
Name:Mary Smith
Em=il: mary.swithgmail . com

e e e o o e e o g i e o o e i e o o o e e e o o e e e

BUILDL SUCCESSFUL (total time: 0 seconds)

Practice 5-2: Using the StringBuilder Class

Overview
In this practice, you create, initialize, and manipulate StringBuilder objects.

Assumptions
The PersonTwoTest . java file appears in the practice folder for this lesson: Lesson05

Creating and Using String Objects
1. Create a new Java class called “PersonTwo”.

2. Declare and instantiate two member fields of type StringBuilder to hold the person’s
name and phone number, respectively. For the name field, initialize the capacity of the
StringBuilder object to 8. Use meaningful field names.

Example Solution:

public class PersonTwo {
public StringBuilder name = new StringBuilder (8);
public StringBuilder phoneNumber = new StringBuilder();

}

3. Create a new method called “displayPersoninfo”.

4. Inthe body of the displayPersonInfo method, populate and then display the name
object. Ensure that the total number of characters in the name exceeds the initial capacity
of the object (8). The following table provides high-level steps for this task. More detailed
instructions can be found below the table.

Step Window/Page Description Choices or Values
a. Add a first name to the Use the append method of the
StringBuilder object StringBuilder class
b. Append two more values to the a space: “ “
name object a last name

Note: The total number of characters
appended should exceed 8

C. Display the string value of the Use the toString method of the
name object StringBuilder class
d. Display the capacity of the name Use the capacity method of the
object with a suitable label StringBuilder class
e. Compile and run the program Run the PersonTwoTest.java file
a. Use the append method of the StringBuilder class to append a first name.
Example:
name.append (“Fernando”) ;
b. Use the same method in two separate invocations to add first a space (“ “), and then a

last name. Ensure that total number of characters that you have added to the name
object exceeds 8.

Note: You can accomplish the same thing by using a String object and concatenating
additional values. However, this would be inefficient because a new String object is
created with each concatenation. String object capacity cannot be increased as Strings
are immutable.

Use the System.out.println method to display the entire name value. You can
embed the toString method of name object within the System.out.println
method.

System.out.println(“Name: “ + name.toString());

Display the capacity of the name object, using the capacity method. The
StringBuilder object has dynamically increased the capacity to contain all of the
values that you have appended.

Example Solution:

e.

public void displayPersonInfo () {
name.append (“"Fernando”) ;
name.append (“ “);
name.append (“Gonzalez”) ;
// Display the name object
System.out.println(“Name: + name.toString());
// Display the capacity
System.out.println (“Name object capacity: ™ +

name.capacity());

}

Click Save to compile. Run the PersonTwoTest . java file. The output should look
similar to the screenshot below. Notice that the capacity has been increased from the
initial setting of 8 to accommodate the full name.

: Output - Practice0b {run) ¥ x

D> run:

Name: Fernando Gonzalez

Y Hame object capacity: 18

EUILL SUCCESSFUL (total time: 0 seconds)

Populate and manipulate the phoneNumber object. Here you append a string of digits and
then use the insert method to insert dashes at various index locations, achieving the
format “nnn-nnn-nnnn”. The table below provides high-level instructions for this task. More
detailed instructions can be found below the table.

Step Window/Page Description Choices or Values

a. Append a 10 digit St ring value to Example: “5551234567”
the phoneNumber object

b. Insert a dash (“-“) after the first three | Use the insert method that takes an int
characters of the phoneNumber. value for the offset and inserts a String

value. (Use offset number 3)

C. Insert another dash after the first Reminder: The previous insertion pushed the
seven characters of the remaining characters over one index.
phoneNumber

d. Display the phoneNumber object Use the toString method of the

StringBuilder class

a. Use the append method of the StringBuilder class to append a String value
consisting of ten numbers.

b. Insert a dash (“-“) at offset position 3. This puts the dash at the 4™ position in the String,
pushing all of the remaining characters over one position. The syntax for this method is
shown below:

<object reference>.insert (int offset, String str);
Example: Consider the following string,

“56551234567”
The offset position 3 occurs at the number 1. (Index numbers begin at 0.) If the dash is
inserted at offset position 3, it pushes the number currently at that position and all
remaining numbers over to the next offset position.
c. Insert a dash at offset position 7 (where the number 4 is currently placed).

d. Use System.out.println to display the output from the StringBuilder object’s
toString method.

Solution:
phoneNumber. append ("5551234567") ;
phoneNumber.insert (3, "-");
phoneNumber.insert (7, "-");

System.out.println ("Phone number: " +

phoneNumber.toString());

6. Click Save to compile. Run the PersonTwoTest.java file. Check the output from the
displayPersonInfo method. Ensure that the dashes appear between the third and
fourth digits and between the sixth and seventh digits.

: Qutput - Practice06 {run) ¥F X

I;l> riamn:

Name: Fernando Gonzale=
¥ fame object capacity: 18
Phone mumber: EEE-1Z3-4E5&87

ni{% BUILD SUCCESSFUL (total time: 1 second)

7. Use the substring method of the StringBuilder class to get just the first name value
in the name object. Use the substring method that takes the start index and the end
index for the substring. Display this value using System.out.println.

Syntax:
<object reference>.substring(int start, int end);

Note: Indexes for characters in the StringBuilder class, much like array indexes, are
zero-based. The first character in the StringBuilder is located at position (or index) O.
While the start index of the substring method is inclusive (it is the actual index of the
first character you want returned), the end index is exclusive (it is the index of the
character just to the right of the last character of your substring.)

Example Solution:

// Assumes the first name “Fernando”

System.out.println(“"First name: “ + name.substring(0,8));

8. Save and again run the PersonTwoTest.java. Check the output and make any
adjustments necessary to the index numbers to get the correct first name value.

: Dutput - Practice06 (run} ¥ x

|>[> Tt

Name: Fernando Gonzalez
Y Hame object capacity: 18
Phone number: EEE-1FZ3-4E587
@iy First Name: Fernando I

BUILDL SUCCESSFUL (total time: 0 seconds)

Practice 5-3: Examining the Java API Specification

Overview

In this practice, you examine the Java API specification to become familiar with the
documentation and how to look up classes and methods. You are not expected to understand
everything you see. As you progress through this course, the Java API documentation should
make more sense.

Assumptions
The Java SE 7 API specification is installed locally on your machine.

Tasks

1. To viewthe Java SE7 API specification (also referred to as “javadocs”), double-click the
shortcut on your desktop (entitled “Java JDK7 1.7.0 API Docs”).

avalM P . N
J‘l a Pl‘ltf()lm S Package Class Use Tree Deprecated Index Help

Standal'd Ed. 7 Prev Next Frames NoFrames
All Classes Java™ Platform, Standard Edition 7
: API Specification
Packages
) This document is the API specification for the Java™ Platform, Standard Edition.
e java.applet v S
< Sivl ee: Description
E -
All Clas 1 ot
£ - ¢ISSCS Package Description
java.applet Provides the classes nece
o Abstractfction java.awt Contains all ofthe classes
* AbstractAnnotationValueVisit >
strac ettt sl i java.awt.color Provides classes for color
o AbstractinnotationValueVisitot o
o AbstractBorder java.awt.datatransfer Pravides interfaces and cla
o AbstractButton java.awt.dnd Draghanq Dr?ptis g dfire(ctfn
o . AbstratCelEdior mechanism to transfer infg
o AbstractCollection java.awt.event Provides interfaces and clg
o AbstractColorChooserPanel java.awt.font Provides classes and intet
o AbstractDocument java.awt.geom Provides the Java 2D clasg
o AbstractDocument. AttributeC Tt i R

The opening page of the javadocs consists of three frames as shown above. It allows you
to navigate through the hierarchy of classes in the API by class name or by package.
(Note: you learn about packages later in this course)

2. Using the Packages frame, selectthe java.lang package. The All Classes frame now
changes to display only classes within that package.

3. Find the Math class and click it to display its documentation in the main frame.

* {ava awlitn spl
* java awtimage
* java awtimage renderable
. . Prev Class MNext Class Frames Mo Frames
® java awt print
® java beans Summary: Mested | Field | Constr | Method Detail: Field | Constr | Method
® java beans beancontest java.lang
* javaio
* javalang ~— -— Class Math
ava.
® javalang annotation
- . java.lang.Ohject
* javalanginstnument ! ;
I g b jawva.lang.math
< | v
M
Classes 0 public final class Math
extends Chiject
Boolean
Byte The class Math contains methods for performing basic numeric opera
Character

Character.Suhzet
Character.UnicodeBlock
Clazs

ClassLoader
ClassiValue

Compiler

Couble

Enum

Float
InheritableThreadLocal
Integer

Long

Math -

nlike some ofthe numeric methods of class StrictMath, all impler
relaxation permits better-performing implementations where strict repr

By default many ofthe Math methods simply call the equivalent method
libraries ar microprocessor instructions, where available, to provide hig
canform to the specification for Math.

The guality of implementation specifications concern twa properties, a
measured in terms of Lips, units in the last place. For a given floating-¢
hracketing that numerical walue. When discussing the accuracy of a md
any argument. If a method abways has an error less than 0.5 ulps, the

rouncied. A carrectly rounded method is generally the hest a loating-pol
Instead, for the Math class, a larger errar bound of 1 or 2 Ulps is allowg

tho ovartrocnlt chonld bo robirnad oo tho cormmitad kool othomuicg

Answer the following questions about the Math class:
How many methods are there in the Math class?

a.
b.

How many fields are there in the Math class?

Answer:
a.) 54
b.)2

Select several other classes in the Classes panel to answer this question: What class does
every class refer to at the top of the page? Hint: What class is the superclass to all
classes?

|Answer: Object

Find the string class and identify the methods of this class. Which methods enable you to
compare two strings?

|Answer: compareTo and compareToIgnoreCase

Close the Practice06 project in NetBeans.

