

Practices for Lesson 9

Practices Overview

In these practices, you will use some of the java.io classes to read from the console, open and
read files, and serialize and deserialize objects to and from the file system.

Practice 9-1: Summary Level: Writing a Simple Console I/O

Application

Overview

In this practice, you will write a simple console-based application that reads from and writes to
the system console. In NetBeans, the console is opened as a window in the IDE.

Tasks

1. Open the project FileScanner in the following directory:
D:\labs\09\practices\ (or your other folder)

2. Open the file FileScanInteractive.

Notice that the class has a method called countTokens already written for you. This

method takes a String file and String search as parameters. The method will open the

file name passed in and use an instance of a Scanner to look for the search token. For

each token encountered, the method increments the integer field instanceCount. When

the file is exhausted, it returns the value of instanceCount. Note that the class rethrows

any IOException encountered, so you will need to be sure to use this method inside a

try-catch block.

3. Code the main method to check the number of arguments passed. The application expects
at least one argument (a string representing the file to open). If the number of arguments is
less than one, exit the application with an error code (-1).

a. The main method is passed an array of Strings. Use the length attribute to determine

whether the array contains less than one argument.

b. Print a message if there is less than one argument, and use System.exit to return

an error code. (-1 typically is used to indicate an error.)

4. Save the first argument passed into the application as a String.

5. Create an instance of the FileScanInteractive class. You will need this instance to

call the countTokens method.

6. Open the system console for input using a buffered reader.

a. Use a try-with-resources to open a BufferedReader chained to the system console

input. (Recall that System.in is an input stream connected to the system console.)

b. Be sure to add a catch statement to the try block. Any exception returned will be an

IOException type.

c. In a while loop, read from the system console into a string until the string “q” is entered

on the console by itself.

Note: You can use equalsIgnoreCase to allow your users to enter an upper- or

lowercase “Q.”. Also the trim() method is a good choice to remove any whitespace

characters from the input.

d. If the string read from the console is not the terminate character, call the

countTokens method, passing in the file name and the search string.

e. Print a string indicating how many times the search token appeared in the file.

f. Add any missing import statements.

7. Save the FileScanInteractive class.

8. If you have no compilation errors, you can test your application by using a file from the
resources directory.

a. Right-click the project and select Properties.

b. Click Run.

c. Enter the name of a file to open in the Arguments text box (for example,

D:\labs\resources\DeclarationOfIndependence.txt).

d. Click OK

e. Run the application and try searching for some words like when, rights, and free.

Your output should look something like this:

Searching through the file:

D:\labs\resources\DeclarationOfIndependence.txt

Enter the search string or q to exit: when

The word "when" appears 3 times in the file.

Enter the search string or q to exit: rights

The word "rights" appears 3 times in the file.

Enter the search string or q to exit: free

The word "free" appears 4 times in the file.

Enter the search string or q to exit: q

BUILD SUCCESSFUL (total time: 16 seconds)

Practice 9-1: Detailed Level: Writing a Simple Console I/O

Application

Overview

In this practice, you will write a simple console-based application that reads from and writes to
the system console. In NetBeans, the console is opened as a window in the IDE.

Tasks

1. Open the project FileScanner in the following directory:
D:\labs\09\practices\ (or your other folder)

a. Select File > Open Project.

b. Browse to D:\labs\09\practices. (or your other folder)

c. Select FileScanner and select the “Open as Main Project” check box.

d. Click the Open Project button.

2. Open the file FileScanInteractive.

Notice that the class has a method called countTokens already written for you. This

method takes a String file and String search as parameters. The method will open the

file name passed in and use an instance of a Scanner to look for the search token. For

each token encountered, the method increments the integer field instanceCount. When

the file is exhausted, it returns the value of instanceCount. Note that the class rethrows

any IOException encountered, so you will need to be sure to use this method inside a

try-catch block.

3. Code the main method to check the number of arguments passed. The application expects

at least one argument (a string representing the file to open). If the number of arguments is

less than one, exit the application with an error code (-1).

a. The main method is passed an array of Strings. Use the length attribute to determine

whether the array contains less than one argument.

b. Print a message if there is less than one argument, and use System.exit to return

an error code. (-1 typically is used to indicate an error.) For example:

if (args.length < 1) {

System.out.println("Usage: java FileScanInteractive <file to

search>");

System.exit(-1);

}

4. Save the first argument passed into the application as a String.

String file = args[0];

5. Create an instance of the FileScanInteractive class. You will need this instance to

call the countTokens method.

FileScanInteractive scan = new FileScanInteractive ();

6. Open the system console for input using a buffered reader.

a. Use a try-with-resources to open a BufferedReader chained to the system console

input. (Recall that System.in is an input stream connected to the system console.)

b. Be sure to add a catch statement to the try block. Any exception returned will be an

IOException type. For example:

try (BufferedReader in =

new BufferedReader(new InputStreamReader(System.in))) {

} catch (IOException e) { // Catch any IO exceptions.

System.out.println("Exception: " + e);

System.exit(-1);

}

c. In the try block that you created, add a while loop. The while loop should run until a
break statement. Inside the while loop, read from the system console into a string until
the string “q” is entered on the console by itself.

Note: You can use equalsIgnoreCase to allow your users to enter an upper- or

lowercase “Q.” Also the trim() method is a good choice to remove any whitespace

characters from the input.

d. If the string read from the console is not the terminate character, call the

countTokens method, passing in the file name and the search string.

e. Print a string indicating how many times the search token appeared in the file.

f. Your code inside the try block should look something like this:

String search = "";

System.out.println ("Searching through the file: " + file);

while (true) {

System.out.print("Enter the search string or q to exit: ");

search = in.readLine().trim();

if (search.equalsIgnoreCase("q")) break;

int count = scan.countTokens(file, search);

System.out.println("The word \"" + search + "\" appears "

+ count + " times in the file.");

}

g. Add any missing import statements.

7. Save the FileScanInteractive class.

8. If you have no compilation errors, you can test your application by using a file from the

resources directory.

a. Right-click the project and select Properties.

b. Click Run.

c. Enter the name of a file to open in the Arguments text box (for example,

D:\labs\resources\DeclarationOfIndependence.txt).

d. Click OK

e. Run the application and try searching for some words like when, rights, and free.

Your output should look something like this:

Searching through the file:

D:\labs\resources\DeclarationOfIndependence.txt

Enter the search string or q to exit: when

The word "when" appears 3 times in the file.

Enter the search string or q to exit: rights

The word "rights" appears 3 times in the file.

Enter the search string or q to exit: free

The word "free" appears 4 times in the file.

Enter the search string or q to exit: q

BUILD SUCCESSFUL (total time: 16 seconds)

Practice 9-2: Summary Level: Serializing and Deserializing a
ShoppingCart

Overview

In this practice, you use the java.io.ObjectOutputStream class to write a Java object to

the file system (serialize), and then use the same stream to read the file back into an object
reference. You will also customize the serialization and deserialization of the ShoppingCart

object.

Tasks

1. Open the SerializeShoppingCart project in the

D:\labs\09\practices directory. (or your other folder)

2. Expand the com.example.test package. Notice there are two Java main classes in this

package, SerializeTest and DeserializeTest. You will be writing the code in these

main classes to serialize and deserialize ShoppingCart objects.

3. Open the SerializeTest class. You will write the methods in this class to write several

ShoppingCart objects to the file system.

a. Read through the code. You will note that the class prompts for the cart ID and

constructs an instance of ShoppingCart with the cart ID in the constructor.

b. The code then adds three Item objects to the ShoppingCart.

c. The code then prints out the number of items in the cart, and the total cost of the items

in the cart. Look through the ShoppingCart and Item classes in the

com.example.domain package for details on how these classes work.

d. You will be writing the code to open an ObjectOutputStream and write the

ShoppingCart as a serialized object on the file system.

4. Create the try block to open a FileOutputStream chained to an

ObjectOutputStream. The file name is already constructed for you.

a. Your code will go where the comment line is at the bottom of the file.

b. Open a FileOutputStream with the cartFile string in a try-with-resources block.

c. Pass the file output stream instance to an ObjectOutputStream to write the

serialized object instance to the file.

d. Write the cart object to the object output stream instance by using the writeObject
method.

e. Be sure to catch any IOException and exit with an error as necessary.

f. Add a success message before the method ends:

System.out.println ("Successfully serialized shopping cart with

ID: " + cart.getCartId());

g. Save the file.

5. Open the DeserializeTest class. The main method in this class reads from the console

for the ID of the customer shopping cart to deserialize.

6. Your code will go where the comment line is at the bottom of the file.

a. Open a FileInputStream with the cartFile string in a try-with-resources block.

b. Pass the file input stream instance to an ObjectInputStream to read the serialized

object instance from the file.

c. Read the cart object from the object input stream using the readObject method. Be

sure to cast the result to the appropriate object type.

d. You will need to catch both ClassNotFoundException and IOException, so use a

multi-catch expression.

e. Finally, print out the results of the cart (all of its contents) and the cart total cost

using the following code:

System.out.println ("Shopping Cart contains: ");

List<Item> cartContents = cart.getItems();

for (Item item : cartContents) {

System.out.println (item);

}

System.out.println ("Shopping cart total: " +

NumberFormat.getCurrencyInstance().format(cart.getCartTotal()));

f. Save the file.

7. Open the ShoppingCart class. You will customize the serialization and deserialization of

this class by adding the two methods called during serialization/deserialization.

a. Add a writeObject method invoked during serialization. This method should

serialize the current object fields and then add a timestamp (Date object instance) to

end of the object stream.

8. Add a method to the ShoppingCart class that is invoked during deserialization.

a. Add a readObject method with the appropriate signature. This method will

recalculate the total cost of the shopping cart and print the timestamp that was added
to the stream.

b. Save the file.

9. Test the application. This application has two main methods, so you will need to run each

main in turn.

a. To run the SerializeTest class, right-click the class name and select Run File.

b. The output will look like this:

Enter the ID of the cart file to create and serialize or q exit.

101

Shopping cart 101 contains 3 items

Shopping cart total: $58.39

Successfully serialized shopping cart with ID: 101

c. To run the DeserializeTest, right-click the class name and select Run File.

d. Enter the ID 101 and the output will look like something this:

Enter the ID of the cart file to deserialize or q exit.

101

Restored Shopping Cart from: Oct 26, 2011

Successfully deserialized shopping cart with ID: 101

Shopping cart contains:

Item ID: 101 Description: Duke Plastic Circular Flying Disc

Cost: 10.95

Item ID: 123 Description: Duke Soccer Pro Soccer ball Cost:

29.95

Item ID: 45 Description: Duke "The Edge" Tennis Balls - 12-Ball

Bag Cost: 17.49

Shopping cart total: $58.39

Practice 9-2: Detailed Level: Serializing and Deserializing a
ShoppingCart

Overview

In this practice, you use the java.io.ObjectOutputStream class to write a Java object to

the file system (serialize), and then use the same stream to read the file back into an object
reference. You will also customize the serialization and deserialization of the ShoppingCart

object.

Tasks

1. Open the SerializeShoppingCart project in the

D:\labs\09\practices directory. (or your other folder)

a. Select File > Open Project.

b. Browse to the D:\labs\09\practices directory. (or your other folder)

c. Select the project SerializeShoppingCart.

d. Click the Open Project button.

2. Expand the com.example.test package. Notice there are two Java main classes in this

package, SerializeTest and DeserializeTest. You will be writing the code in these

main classes to serialize and deserialize ShoppingCart objects.

3. Open the SerializeTest class. You will write the methods in this class to write several

ShoppingCart objects to the file system.

a. Read through the code. You will note that the class prompts for the cart ID and

constructs an instance of ShoppingCart with the cart ID in the constructor.

b. The code then adds three Item objects to the ShoppingCart.

c. The code then prints out the number of items in the cart, and the total cost of the items

in the cart. Look through the ShoppingCart and Item classes in the

com.example.domain package for details on how these classes work.

d. You will be writing the code to open an ObjectOutputStream and write the

ShoppingCart as a serialized object on the file system.

4. Create the try block to open a FileOutputStream chained to an

ObjectOutputStream. The file name is already constructed for you.

a. Your code will go where the comment line is at the bottom of the file.

b. Open a FileOutputStream with the cartFile string in a try-with-resources block.

c. Pass the file output stream instance to an ObjectOutputStream to write the

serialized object instance to the file.

d. Write the cart object to the object output stream instance by using the writeObject
method.

e. Be sure to catch any IOException and exit with an error as necessary.

f. Your code might look like this:

try (FileOutputStream fos = new FileOutputStream (cartFile);

ObjectOutputStream o = new ObjectOutputStream (fos)) {

o.writeObject(cart);

} catch (IOException e) {

System.out.println ("Exception serializing " + cartFile + ":

" + e);

System.exit (-1);

}

g. Add a success message before the method ends:

System.out.println ("Successfully serialized shopping cart with

ID: " + cart.getCartId());

h. Add any missing import statements.

i. Save the file.

5. Open the DeserializeTest class. The main method in this class reads from the console

for the ID of the customer shopping cart to deserialize.

6. Your code will go where the comment line is at the bottom of the file.

a. Open a FileInputStream with the cartFile string in a try-with-resources block.

b. Pass the file input stream instance to an ObjectInputStream to read the serialized

object instance from the file.

c. Read the cart object from the object input stream using the readObject method. Be

sure to cast the result to the appropriate object type.

d. You will need to catch both ClassNotFoundException and IOException, so use a

multi-catch expression.

e. Your code should look like this:

try (FileInputStream fis = new FileInputStream (cartFile);

ObjectInputStream in = new ObjectInputStream (fis)) {

cart = (ShoppingCart)in.readObject();

} catch (final ClassNotFoundException | IOException e) {

System.out.println ("Exception deserializing " + cartFile +

": " + e);

System.exit (-1);

}

System.out.println ("Successfully deserialized shopping cart

with ID: " + cart.getCartId());

f. Finally, print out the results of the cart (all of its contents) and the cart total cost

using the following code:

System.out.println ("Shopping cart contains: ");

List<Item> cartContents = cart.getItems();

for (Item item : cartContents) {

System.out.println (item);

}

System.out.println ("Shopping cart total: " +

NumberFormat.getCurrencyInstance().format(cart.getCartTotal()));

g. Save the file.

7. Open the ShoppingCart class. You will customize the serialization and deserialization of

this class by adding the two methods called during serialization/deserialization.

a. Add a method invoked during serialization that will add a timestamp (Date object
instance) to the end of the object stream.

b. Add a method with the signature:

private void writeObject(ObjectOutputStream oos) throws

IOException {

c. Make sure that the method serializes the current object fields first, and then write the

Date object instance:

oos.defaultWriteObject();

oos.writeObject(new Date());

}

8. Add a method to the ShoppingCart class that is invoked during deserialization. This

method will recalculate the total cost of the shopping cart and print the timestamp that was
added to the stream.

a. Add a method with the signature:

private void readObject(ObjectInputStream ois) throws

IOException, ClassNotFoundException {

b. This method will deserialize the fields from the object stream, and recalculate the total
dollar value of the current cart contents:

ois.defaultReadObject();

if (cartTotal == 0 && (items.size() > 0)) {

for (Item item : items)

cartTotal += item.getCost();

}

c. Get the Date object from the serialized stream and print the timestamp to the console.

Date date = (Date)ois.readObject();

System.out.println ("Restored Shopping Cart from: " +

DateFormat.getDateInstance().format(date));

}

d. Save the ShoppingCart.

9. Test the application. This application has two main methods, so you will need to run each

main in turn.

a. To run the SerializeTest class, right-click the class name and select Run File.

Enter a cart id, such as 101.

b. The output will look like this:

Enter the ID of the cart file to create and serialize or q exit.

101

Shopping cart 101 contains 3 items

Shopping cart total: $58.39

Successfully serialized shopping cart with ID: 101

c. To run the DeserializeTest, right-click the class name and select Run File.

d. Enter the ID 101 and the output will look like this:

Enter the ID of the cart file to deserialize or q exit.

101

Restored Shopping Cart from: Oct 26, 2011

Successfully deserialized shopping cart with ID: 101

Shopping cart contains:

Item ID: 101 Description: Duke Plastic Circular Flying Disc

Cost: 10.95

Item ID: 123 Description: Duke Soccer Pro Soccer ball Cost:

29.95

Item ID: 45 Description: Duke "The Edge" Tennis Balls - 12-Ball

Bag Cost: 17.49

Shopping cart total: $58.39

