

Practices for Lesson 7

Practices Overview

In these practices, you create and populate arrays and ArrayLists. You also use the methods of
the ArrayList class to manipulate its values. In the last exercise, you create and use a two-
dimensional array.

Practice 7-1: Creating a Class with a One-Dimensional Array of
Primitive Types

Overview

In this practice, you create an array containing the number of days that an employee at the
Duke’s Choice company receives, based on the number of years that the employee has worked
for Duke’s Choice. The following table shows the vacation scale for Duke’s Choice:

Number of Years of Employment Number of Days of Vacation

Up to 1 year 10

1, 2, or 3 years 15

4 or 5 years 20

6 or more years 25

Assumptions

The VacationScaleTest.java file appears in the practice folder for this lesson,
Lesson07.

Tasks

1. Create a new project from existing source called Practice08. Set the Source Package

Folder to point to Lesson07. Remember to also change the Source/Binary Format

property. If you need further details, refer to Practice 1-2, Steps 3 and 4.

2. Create a new Java class called VacationScale. Declare but do not initialize two public fields
to this class as follows:

 int array called vacationDays

 int called yearsOfService

Hint: Use the square brackets ([]) next to the data type to indicate that this field is an array.

3. Create a method in the VacationScale class called setVacationScale. The table below

provides high level steps for this task. More detailed steps can be found below the table.

Step Window/Page Description Choices or Values

a. Initialize the vacationDays array Set size of the array to 7

b. Populate each element of the

vacationDays array to align a

number of years of service with the
correct number of vacation days..
(See the table above)

The value = number of vacation days

The element index = number of years of
service

a. Use the new keyword to initialize the vacationDays array. Supply the size of the

array within the square brackets as shown below.

vacationDays = new int[7];

b. Assign each array element, beginning with vacationDays[0] with the appropriate

number of days of vacation from the table shown above in the overview section. For
example, an employee with 0 years of service is entitled to 10 vacation days.

Therefore, vacationDays[0] = 10. An employee with 1 year of service is entitled to

15 days of vacation. Therefore vacationDays[1] = 15.

Solution:

public void setVacationScale(){

vacationDays = new int[7];

vacationDays[0] = 10;

vacationDays[1] = 15;

vacationDays[2] = 15;

vacationDays[3] = 15;

vacationDays[4] = 20;

// … and so on through element 6

}

4. Create a public method called displayVacationDays that displays the number of

vacation days due to an employee with the years of service indicated in the
yearsOfService field. Use an if/else construct to check for an invalid

yearsOfService (a negative number) and display an error message in this case.

Hint: You can use a variable within the square brackets to represent the array index

number. For example:

vacationDays[yearsOfService]

Example:

public void displayVacationDays(){

if(yearsOfService >= 0){

System.out.println(“Days of Vacation: “ +

vacationDays[yearsOfService]);

}else {

System.out.println(“Invalid years of service”);

}

}

5. Save and compile your program. Run the VacationScaleTest class to test your

program.

Note: The program, as currently written, throws an exception (an error). You fix this
problem in the next few steps.

6. The exception thrown by the Java Virtual Machine (JVM) is an ArrayIndexOutOfBounds
exception. Your Output window should look similar to the screenshot below:

This exception is thrown when an attempt has been made to access a non-existent index of
an array. Notice that the index number that caused the exception is shown in the error
message: index #10. Remember that this array has 7 elements, indexed by numbers 0
through 6. Why did the program try to access index 10?

Answer:

If you look at the displayVacationDays method, you see that the yearsOfService

field is used as the array index (as an argument to the System.out.println method).

It is, of course, conceivable that an employee would have more than 6 (the highest index

number of the array) years of service. The displayVacationDays method needs to

be modified to account for >6 years of service.

7. Change the if/else construct to also check for a yearsOfService value that is >=6. All

years of service greater than or equal to 6 receive the same number of vacation days.

Hint: For any yearsOfService value between 0 and 5 (inclusive), you can display the

value of the array whose index corresponds to that value. For a yearsOfService of 6 and

above, use the value referenced by the last array index.

Solution:

if (yearsOfService >= 0 && yearsOfService < 6) {

System.out.println(“Days of vacation: “ +

vacationDays[yearsOfService]);

} else if (yearsOfService >= 6) {

System.out.println(“Days of vacation: “ +

vacationDays[6]);

} else {

System.out.println(“Invalid years of service”);

}

8. Save and compile the program and then test it again by running the VacationScaleTest

class. You should now see all three of the test values for yearsOfService displayed in

the output window.

Practice 7-2: Creating and Working With an ArrayList

Overview

In this practice, you create the NamesList class and the NamesListTest class in order to
experiment with populating and manipulating ArrayLists. There are two sections in this practice.
In the first section, you create the two classes and then add a method to the NamesList class to
populate the list and display its contents. In the second section, you add a method to manipulate
the values in the list.

Assumptions

None

Creating and Populating an ArrayList

1. Create a new Java main class called NamesListTest. Reminder: Right-click the project

name in the Projects window and select New > Java Main Class. Leave the main method

empty for the time being. You add code later.

2. Create a new Java class called NamesList.

3. In the NamesList class, declare a public ArrayList field called listOfNames. Do not

instantiate the listOfNames field.

Note: When you type the word ArrayList, the editor indicates a warning in the margin of

this line. It does not recognize the ArrayList class. You must import this class to make it

visible to the compiler.

4. Put your cursor over the warning icon in the margin to see the warning description. Click
Alt-Enter to view and select from a list of hints to solve this problem. Select Add import for
java.util.ArrayList as shown here:

The import statement is placed at the top of the NamesList class (above the class
declaration).

5. Add a new method to the NamesList class called setList. Code the method as described in
the table below. More detailed steps can be found below the table.

Step Code Description Choices or Values

a. Instantiate the listOfNames object Use the new keyword. Do not specify size.

b. Add a name (first and last name) to

the listOfNames object
Use the add method

Example: listOfNames.add(“Joe
Smith”);

c. Repeat step b three times to add a
total of four names to the

listOfNames object.

d. Print the list of names with a suitable
label.

You can just print the object, itself.

(listOfNames)

e. Print the size of the listOfNames
ArrayList

Use the size method of the listOfNames
object

a. Use the new keyword to instantiate listOfNames. Example:

listOfNames = new ArrayList();

b. Invoke the add method of the listOfNames object. Pass a String value containing

first_name and last_name, separated by a space. (See example in table above)

c. Repeat step b three more times, using a different name in each method invocation.

d. Use System.out.println to print out all of the names within the listOfNames

object. Use a suitable label and concatenate the listOfNames object to it.

System.out.println(“Names list: “ + listOfNames);

e. Use System.out.println to print out the size (number of elements) of the

listOfNames object. Use the size method of the listOfNames object and

concatenate a suitable label.

System.out.println(“Size of ArrayList: “ + listOfNames.size());

Solution:

public void setList(){

listOfNames = new ArrayList();

listOfNames.add(“Joe Smith”);

listOfNames.add(“Mary Palmer”);

listOfNames.add(“Jose Gonzalez”);

listOfNames.add(“Linda Baker”);

System.out.println(“Names list: “ + listOfNames);

System.out.println(“Size of ArrayList: “ +

listOfNames.size());

}

6. Click Save to compile.

7. Open the NamesListTest class in the editor. In the main method:

8. Instantiate a NamesList object called “names” using the new keyword.

a. Invoke the setList method of the names object.

9. Save and compile your program. Run the NamesListTest class to test the program.

Manipulating the ArrayList

10. Add another new method to the NamesList class called manipulateList. Code the

method as described in the table below. More detailed steps can be found below the table.

Step Code Description Choices or Values

a. Remove one of the names from the
list

Use the remove(Object obj) method of

the ArrayList object.

Hint: a String literal is an object.

b. Print the contents of the

listOfNames object, using a

suitable label

c. Print the size of the listOfNames
object

Use the size method of the ArrayList

d. Add the name you just removed
back into the list in a different
location

Use the add(int index, Object obj)

method of the ArrayList object.

Hint: Index numbers are zero-based.

e. Print the contents of the

listOfNames object

f. Print the size of the listOfNames
object

a. Remove one of the names in the ArrayList using the remove method and passing

the full name, enclosed in double quotes.

 Note: This method is defined as taking an Object as an argument. A String
literal, such as the quote-enclosed full name, is an object.

listOfNames.remove(“Joe Smith”);

b. Use System.out.println to print the listOfNames object. Use an appropriate

label.

c. Use System.out.println to print the current size of the ArrayList. Use an

appropriate label.

d. Use the add method of the ArrayList to add the name you just removed back into

the ArrayList, but at a different location in the list than previously.

Note: The add method is “overloaded”. That is, it has two different method signatures.

One of the add methods takes an Object and appends it to the end of the

ArrayList. The other method takes an index number and an Object. It inserts the

Object before the referenced index number, pushing all remaining list elements over

one index number. Use the latter add method. An example is shown below:

listOfNames.add(1, “Joe Smith”);

e. Use a suitable label when printing the newly modified contents of the listOfNames
object.

f. Use a suitable label when printing the new size of the listOfNames object.

Example Solution:

listOfNames.remove (“Joe Smith”);

System.out.println(“Names list after removing element: “

+ listOfNames);

System.out.println(“Size of ArrayList: “ +

listOfNames.size());

listOfNames.add(1, “Joe Smith”);

System.out.println(“Names list after adding element: “

+ listOfNames);

System.out.println(“Size of ArrayList: “ +

listOfNames.size());

11. In the main method of the NamesListTest class, invoke the manipulateList method of

the names object.

Note: You may need to click Save so that the compiler can resolve the reference to

manipulateList.

12. Save and compile the program.

13. Run the NamesListTest class to test the program. The output should look similar to the
screenshot below, depending upon the name you removed and added, and the index

number you used in the add method.

Note: In the example shown above, Joe Smith was previously located at index position 0
and Mary Palmer was at index position 1.

After removing Joe Smith, Mary Palmer moved to index position 0 and Jose Gonzalez was
at index position 1.

Joe Smith was then added at index position 1, pushing Jose Gonzalez to index position 2.

Practice 7-3: Using Runtime Arguments and Parsing the args Array

Overview

In this practice, you write a guessing game that accepts an argument and displays an
associated message. You create a class that accepts a runtime argument between 1 and 5,
inclusive. You also randomly generate a number between 1 and 5 in the class and compare the
value of the argument with the randomly generated number.

Assumptions

None

Tasks

1. Create a new Java Main Class called GuessingGame.

2. In the main method, declare two int variables as shown below:

int randomNum = 0;

int guess;

3. Add code to the main method to accept a single argument of any number in the range of 1

to 5, inclusive, or the word “help”. The high level steps are described in the pseudo code
below, followed by helpful hints. If you need additional assistance, follow the steps below

the pseudo code and hints. Remember, the solution can also be found in Lesson07

4. Pseudo Code for main Method:

if length of args array == 0 or value of args[0] = “help”

print a Correct Usage message

else
randomNum = a generated random number 1 - 5

guess = integer value of args[0]

if argument < 1 or > 5

print an error message (invalid argument)

else

if argument == randomNum

print congratulations message

Hints

else

print a “Sorry; try again” message

 Use the compareTo method of the String class (elements of the args array are

always Strings) to match the args[0] to “help”.

 To generate the random number 1 – 5, use the following code snippet:

randomNum = ((int)(Math.random()*5)+1);

 Convert the runtime argument to an int before assigning it to the guess variable.

Use the Integer.parseInt method to do the conversion.

Detailed Steps

a. If the first argument in the args array equals “help” or if the args array is empty,

display the usage of the program. For example:

“Usage: java GuessingGame [argument]”

“Enter a number from 1 to 5 as your guess”

b. If a 1, 2, 3, 4, or 5 is entered:

 Generate a random number (as shown in Hint above)

 Convert the arg[0] to an int and assign it to the guess variable.

guess = Integer.parseInt(args[0]);

 Compare the guess to randomNum using a nested if/else construct.

 If they match, display a “Congratulations” message.

 Else, tell them what the random number was and ask them to “Try again.”

Solution:

public static void main(String[] args){

int randomNum = 0;

int guess;

if(args.length == 0 || args[0].compareTo(“help”) == 0){

System.out.println

(“Usage: java GuessingGame [argument]”);

System.out.println();

System.out.println

(“Enter a number from 1 – 5 as your guess.”);

}else {

randomNum = ((int)(Math.random()*5) +1);

guess = Integer.parseInt(args[0]);

if(guess < 1 || guess > 5){

System.out.println

(“Invalid argument: Enter a number from 1 - 5”);

}else {

if(guess == randomNum){

System.out.println

(“Great guess! You got it right!”);

}else {

System.out.println

(“Sorry. The number was “ + randomNum +

“. Try again.”);

}//end of innermost if/else

} // end of first nested if/else

}// end of outer if/else

}// end of main method

5. Save and compile the program.

6. Test it by running the GuessingGame class.

Note: Since no runtime parameter was passed to the args array, you should get the

Usage message as shown here.

Note: When using an IDE, you don’t have access to the command line to provide runtime
parameters. Therefore, you enter your “guess” (runtime parameter) as a runtime property of
the project and then run the entire project, rather than just running an individual file.

7. Right-click the project name in the Projects window and select Properties from the menu.

8. In the Project Properties window, select the Run category. Change the Main Class to
GuessingGame and enter a number from 1 to 5 in the Arguments field. Click OK.

9. Now run the project by clicking the Run button on the main toolbar.

10. You should receive either the “Great guess…” message or the “Sorry. …Try again.”
message. Continue to click the run button to see the different random numbers generated
and how the program responds by comparing it with your guess.

11. Close the Practice08 project in NetBeans.

This completes the Lesson 7 practices. In the practices for the next lesson, you have an
opportunity to work with two-dimensional arrays.

