

Practices for Lesson 09

Practices Overview

In these practices, you create and use methods with arguments. In a challenge exercise, you
create an overloaded method.

Practice 9-1: Writing a Method That Uses Arguments and Return
Values

Overview

In this practice, you create a class to order more than one shirt and then display the total order
value of the shirts.

Assumptions

This practice assumes that the following files appear in the practice folder for this lesson,

Lesson09:

 Order.java

 Shirt.java

Tasks

1. Create a new project from existing source called Practice10. Set the Source Package

Folder to point to Lesson09. Remember to also change the Source/Binary Format

property. If you need further details, refer to Practice 1-2, Steps 3 and 4.

2. Open the Shirt class and examine the member fields and the method it contains.

3. Open the Order class and examine its member fields and method.

4. Create a new Java Main Class called “OrderTest”.

5. Add code to the main method that adds a shirt to a new order and display the total amount
of the order. The high-level steps for this are provided in the table below. More detailed
assistance is given following the table.

Step Code Description Choices or Values

a. Create and initialize two objects. Object type: Shirt

Object type: Order

b. Declare and initialize a local variable
of type double.

Variable Name: totalCost

Value: 0.0

c. Assign a value to the price field of

the Shirt object.

Value: 14.99

d. Invoke the addShirt method of the

Order object.

Method argument: the Shirt object

Method return: assign to totalCost

e. Display the return value with a
suitable label.

Example output:

“Total amount for the order is $14.00”

Further details:

The documentation for the addShirt method is as follows:

Adds a shirt to a list of shirts in an order

Syntax:

public double addShirt (Shirt shirt)

Parameters:

shirt – An object reference to a Shirt object

Returns:

A total current amount for the order

Solution:

public static void main(String[] args){

Order order = new Order();

Shirt shirt = new Shirt();

double totalCost = 0.0;

shirt.price = 14.99;

totalCost = order.addShirt(shirt);

System.out.println("Total amount for the order is $" +

totalCost);

}

6. Save and compile your program. Test the order process by running the OrderTest class.

7. In the main method of OrderTest, create additional Shirt objects, assign values to the

price field of each new Shirt object, and add the Shirt objects to your order by

invoking the addShirt method.

Note: Remember that the addShirt method adds the price of the shirt argument object to

the totalPrice field of the Order object. Therefore the totalPrice value grows with

each addition of a shirt. You only need to capture the return value of the final addShirt

method call to get the totalCost value.

Solution:

public static void main(String[] args) {

Order order = new Order();

Shirt shirt = new Shirt(),

shirt2 = new Shirt(),

shirt3 = new Shirt();

double totalCost = 0.0;

shirt.price = 14.99;

shirt2.price = 23.55;

shirt3.price = 49.99;

order.addShirt(shirt);

order.addShirt(shirt2);

totalCost = order.addShirt(shirt3);

System.out.println("Total amount for the order is $" +

totalCost);

}

8. Save and compile the program and, once again, run the OrderTest class to test it. Make
sure that the amount displayed is the total of all of the shirt prices.

Challenge Practice 9-2: Writing a Class That Contains an Overloaded
Method

This practice is optional. Check with your instructor for recommendations about which
optional practices to do. Perform this practice only if you are certain that you have enough time
to perform all of the non-optional practices.

Overview

In this practice, you write a Customer class with an overloaded method called setCustomerInfo.

Assumptions

This practice assumes that the CustomerTest.java file appears in the practice folder for this

lesson, Lesson09, and consequently also in the Practice10 project.

Tasks

1. Create a new Java Class called “Customer”. Declare the following fields and initialize them
as shown in the table below:

Field Type Initial Value

customerID int 0

name String “-name required-“

address String “-address required-“

phoneNumber String “-phone required-“

eMail String “-email optional-“

2. High-level instructions: Within the Customer class, add two overloaded methods called

setCustomerInfo. Depending upon how the setCustomerInfo method is called, it

does one of the following:

 Sets the ID, name, address, and phone number for a Customer object. (This is the
minimum information needed for a new customer.)

 Sets the ID, name, address, phone number, and email address for a Customer object.

Detailed Instructions:

 The two method signatures should be as follows:

public void setCustomerInfo(int Id, String nm, String addr,

String phNum)

public void setCustomerInfo(int Id, String nm, String addr,

String phNum, String email)

 Within each method, assign each argument in the method to its corresponding field.

3. Create a display method to display the values of all the member fields of the Customer

class.

4. Save and compile the program.

5. Open the CustomerTest class. Modify the main method as follows so that it can be used to

test the overloaded methods of the Customer class.

 Create two object references to different Customer objects.

 Use each variation of the setCustomerInfo method to provide information for each

Customer object.

 Display the contents of each Customer object.

Solution:

public static void main(String[] args){

Customer c1 = new Customer(),

c2 = new Customer();

c1.setCustomerInfo(1,”Harry”,”234 Maple St”,

”505-123-4545”);

c2.setCustomerInfo(2,”Sally”,”567 Oak St”,

”505-123-2323”,”sally@gmail.com”);

c1.display();

c2.display();

}

6. Once again, save and compile the program. Run the CustomerTest file to test the program.
Make sure that the output is different for each of the display methods.

mailto:sally@gmail.com

