

Practices for Lesson 14

Practices Overview

In these practices, you create a date application that is similar to the example used in the
lesson. For each practice, a NetBeans project is provided for you. Complete the project as

indicated in the instructions.

Practice 14-1: Summary Level: Creating a Localized Date Application

Overview

In this practice, you create a text-based application that displays dates and times in a number of
different ways. Create the resource bundles to localize the application for French, Simplified

Chinese, and Russian.

Assumptions

You have attended the lecture for this lesson. You have access to the JDK7 API documentation.

Summary

Create a simple text-based date application that displays the following date information for
today:

 Default date

 Long date

 Short date

 Full date

 Full time

 Day of the week

 And a custom day and time that displays: day of the week, long date, era, time, and time
zone

Localize the application so that it displays this information in Simplified Chinese and Russian.
The user should be able to switch between the languages.

The application output in English is shown here.

=== Date App ===

Default Date is: Aug 1, 2011

Long Date is: August 1, 2011

Short Date is: 8/1/11

Full Date is: Monday, August 1, 2011

Full Time is: 10:13:56 AM MDT

Day of week is: Monday

My custom day and time is: Monday August 1, 2011 AD 10:13:56

Mountain Daylight Time

--- Choose Language Option ---

1. Set to English

2. Set to French

3. Set to Chinese

4. Set to Russian

q. Enter q to quit

Enter a command:

Tasks

Open the Localized-Practice01 project in NetBeans and make the following changes:

1. Edit the DateApplication.java file.

2. Create a message bundle for Russian and Simplified Chinese.

 The translated text for the menus can be found in the MessagesText.txt file in the

practices directory.

3. Add code to display the specified date formats (indicated with comments) and localized
text.

4. Add code to change the Locale based on the user input.

5. Run the DateApplication.java file and verify that it operates as described.

Practice 14-1: Detailed Level: Creating a Localized Date Application

Overview

In this practice, you create a text-based application that displays dates and times in a number of
different ways. Create the resource bundles to localize the application for French, Simplified

Chinese, and Russian.

Assumptions

You have attended the lecture for this lesson. You have access to the JDK7 API documentation.

Summary

Create a simple text-based date application that displays the following date information for
today:

 Default date

 Long date

 Short date

 Full date

 Full time

 Day of the week

 And a custom day and time that displays: day of the week, long date, era, time, and time
zone

Localize the application so that it displays this information in Simplified Chinese and Russian.
The user should be able to switch between languages.

The application output in English is shown here.

=== Date App ===

Default Date is: Aug 1, 2011

Long Date is: August 1, 2011

Short Date is: 8/1/11

Full Date is: Monday, August 1, 2011

Full Time is: 10:13:56 AM MDT

Day of week is: Monday

My custom day and time is: Monday August 1, 2011 AD 10:13:56

Mountain Daylight Time

--- Choose Language Option ---

1. Set to English

2. Set to French

3. Set to Chinese

4. Set to Russian

q. Enter q to quit

Enter a command:

Tasks

Open the Localized-Practice01 project in NetBeans and make the following changes:

1. Edit the DateApplication.java file.

2. Open the MessagesText.txt file found in the practices directory for this practice in a

text editor.

3. Create a message bundle file for Russian text named

MessagesBundle_ru_RU.properties.

 Right-click the project and select New > Other > Other > Properties File.

 Click Next.

 Enter MessagesBundle_ru_RU in the File Name field.

 Click Browse.

 Select the src directory.

 Click Select Folder.

 Click Finish.

 Paste the localized Russian text into the file and save it.

4. Create a message bundle file for Simplified Chinese text named

MessagesBundle_zh_CN.properties.

 Right-click the project and select New > Other > Other > Properties File.

 Click Next.

 Enter MessagesBundle_zh_CN in the File Name field.

 Click Finish.

 Paste the localized Simplified Chinese text into the file and save it.

5. Update the code that sets the locale based on user input.

public void setEnglish(){

currentLocale = Locale.US;

messages = ResourceBundle.getBundle("MessagesBundle",

currentLocale);

}

public void setFrench(){

currentLocale = Locale.FRANCE;

messages = ResourceBundle.getBundle("MessagesBundle",

currentLocale);

}

public void setChinese(){

currentLocale = Locale.SIMPLIFIED_CHINESE;

messages = ResourceBundle.getBundle("MessagesBundle",

currentLocale);

}

public void setRussian(){

currentLocale = ruLocale;

this.messages =

ResourceBundle.getBundle("MessagesBundle", currentLocale);

}

6. Add the code that displays the date information to the printMenu method.

df = DateFormat.getDateInstance(DateFormat.DEFAULT,

currentLocale);

pw.println(messages.getString("date1") + " " +

df.format(today));

df = DateFormat.getDateInstance(DateFormat.LONG,

currentLocale);

pw.println(messages.getString("date2") + " " +

df.format(today));

df = DateFormat.getDateInstance(DateFormat.SHORT,

currentLocale);

pw.println(messages.getString("date3") + " " +

df.format(today));

df = DateFormat.getDateInstance(DateFormat.FULL,

currentLocale);

pw.println(messages.getString("date4") + " " +

df.format(today));

df = DateFormat.getTimeInstance(DateFormat.FULL,

currentLocale);

pw.println(messages.getString("date5") + " " +

df.format(today));

sdf = new SimpleDateFormat("EEEE", currentLocale);

pw.println(messages.getString("date6") + " " +

sdf.format(today));

sdf = new SimpleDateFormat("EEEE MMMM d, y G kk:mm:ss

zzzz", currentLocale);

pw.println(messages.getString("date7") + " " +

sdf.format(today));

7. Run the DateApplication.java file and verify that it operates as described.

Practice 14-2: Summary Level: Localizing a JDBC Application

(Optional)

Overview

In this practice, you localize the JDBC application that you created in the practices for the
“Building Database Applications with JDBC” lesson.

Assumptions

You have attended the lecture for this lesson. You have completed the practices for the
“Building Database Applications with JDBC” lesson.

Summary

Localize the JDBC application from the previous lesson. Identify any object that displays menu
or object information and change them so that localized messages are displayed instead of
static text.

Localize the application so that it displays this information in English, French, and Russian. The
user should be able to switch between languages.

Tasks

You have a couple of project choices in this lab. First you can use the project files from Lesson
13, Practice 2, “Using the Data Access Object Pattern,” and just continue with that project.

Alternatively, open the Practice02 project for this lesson. Perform the following steps:

1. Open the EmployeeTestInteractive.java file. Examine the source code and

determine which messages printed to the console should be converted into resource
bundles. Notice that not all text output is included in this class file.

Note: You do not have to include error messages in the bundle. Only prompt and

informational messages should be included.

2. A slight change to the user interface is required.

Currently the main interface looks like this:

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

Changing the user interface to the following makes it easier to translate just the words in

the menu.

[C] - Create | [R] - Read | [U] - Update | [D] - Delete | [L] -

List | [S] – Set Language | [Q] - Quit:

This separates the single character commands from the words. For the solution only the
words were translated. You could, of course, translate both. Notice a new option has been

added to set the language.

3. Create a message bundle for English, French, and Russian.

 The translated text for the menus can be found in the MessagesText02.txt file in

the practices directory.

4. Add a ResourceBundle object to any object that displays menu-related information.

Replace the static text with a call to the resource bundle and get the appropriate string
message.

5. Examine all the date-related source code. Make sure that date information will print in the

appropriate localized format.

6. When you have finished, run EmployeeTestInteractive.java and make sure that all

the menus have been localized.

7. Additional improvements you could make:

 Localize all the error messages in the application.

 Localize the single character options for the main menu.

