

Practices for Lesson 5

Practices Overview

In these practices, you create and manipulate Java technology objects and also create and use
String and StringBuilder objects. In the last exercise, you become familiar with the Java API
specification.

Practice 5-1: Creating and Manipulating Java Objects

Overview

In this practice, you create instances of a class and manipulate these instances in several ways.
This Practice has two sections. In the first section, you create and initialize object instances. In
the second section, you manipulate object references.

Assumptions

The Customer.java file appears in the practice folder for this lesson: Lesson05

Initializing Object Instances

A Customer class is provided for you. In this section, you create, compile, and execute a
CustomerTest class. In this test class, you create objects of the Customer class and set values
to its member fields.

1. Create a new project from existing source called Practice06. Set the Source Package

Folder to point to Lesson05. Remember to also change the Source/Binary Format

property. If you need further details, refer to Practice 1-2, Steps 3 and 4.

2. Open the Customer.java file in the editor and examine its member fields and its method.

You use the field information to complete this practice.

3. Create the CustomerTest class as a “Java Main Class” type. Since this class is run

(executed) by the Java executable, it must contain a main method. The NetBeans IDE

provides the skeleton of a main class for you.

a. Right-click the Practice06 project in the Projects window and select New > Java
MainClass from the popup menu. (This is a shortcut way of creating new Java
classes.)

b. Name the class CustomerTest and click Finish.

c. The CustomerTest class appears in the text editor.

4. In the main method of CustomerTest, add code to declare and initialize two instances of

the Customer class. The table below provides high-level instructions for this task. If you

need more assistance, refer to the detailed steps following the table.

Step Window/Page Description Choices or Values

a. Declare two fields of type Customer cust1

cust2

b. Initialize the two instances Use the new operator

a. Within the body of the main method, declare two fields of type Customer as follows:

Customer cust1, cust2;

b. Initialize each of the variables using this syntax:

<variable name> = new <class name>();

5. Finish coding the main method as indicated in the following table. More detailed

instructions are provided below the table.

Step Window/Page Description Choices or Values

a. Assign values to the member fields

of one of the Customer objects
Example:

cust1.customerID = 1;

b. Repeat for the other Customer
object but use different values for the
fields.

c. Invoke the displayCustomerInfo
method of each object

Use the object reference variable to qualify the
method as you did in step a.

a. Assign values to all of the member fields of one of the Customer objects. Use the
object reference variable to qualify the field name as shown below:

cust1.customerID = 1;

b. Assign different values to each member field of the other Customer object.

c. Invoke the displayCustomerInfo method of each object. Example:

cust1.displayCustomerInfo();

6. Click Save to compile.

7. Run the CustomerTest.java file. Check the output to be sure that each Customer object

displays the distinct values you assigned.

Manipulating Object References

In this section, you assign the value of one object reference to another object reference.

8. Edit the main method of CustomerTest to assign one object reference to another object

reference just above the first line of code that invokes the displayCustomerInfo

method. For example (assuming that cust1 and cust2 are instances of the Customer

class):

cust2 = cust1;

9. Save and run the CustomerTest.java file. Check the output of the

displayCustomerInfo methods for both objects. Both of the object references now point

to the same object in memory so both of the displayCustomerInfo method outputs

should be identical.

Practice 5-2: Using the StringBuilder Class

Overview

In this practice, you create, initialize, and manipulate StringBuilder objects.

Assumptions

The PersonTwoTest.java file appears in the practice folder for this lesson: Lesson05

Creating and Using String Objects

1. Create a new Java class called “PersonTwo”.

2. Declare and instantiate two member fields of type StringBuilder to hold the person’s

name and phone number, respectively. For the name field, initialize the capacity of the

StringBuilder object to 8. Use meaningful field names.

Example Solution:

public class PersonTwo {

public StringBuilder name = new StringBuilder(8);

public StringBuilder phoneNumber = new StringBuilder();

}

3. Create a new method called “displayPersonInfo”.

4. In the body of the displayPersonInfo method, populate and then display the name

object. Ensure that the total number of characters in the name exceeds the initial capacity
of the object (8). The following table provides high-level steps for this task. More detailed
instructions can be found below the table.

Step Window/Page Description Choices or Values

a. Add a first name to the

StringBuilder object
Use the append method of the

StringBuilder class

b. Append two more values to the

name object
a space: “ “

a last name

Note: The total number of characters

appended should exceed 8

c. Display the String value of the

name object

Use the toString method of the

StringBuilder class

d. Display the capacity of the name
object with a suitable label

Use the capacity method of the

StringBuilder class

e. Compile and run the program Run the PersonTwoTest.java file

a. Use the append method of the StringBuilder class to append a first name.

Example:

name.append(“Fernando”);

b. Use the same method in two separate invocations to add first a space (“ “), and then a

last name. Ensure that total number of characters that you have added to the name

object exceeds 8.

Note: You can accomplish the same thing by using a String object and concatenating
additional values. However, this would be inefficient because a new String object is
created with each concatenation. String object capacity cannot be increased as Strings
are immutable.

c. Use the System.out.println method to display the entire name value. You can

embed the toString method of name object within the System.out.println

method.

System.out.println(“Name: “ + name.toString());

d. Display the capacity of the name object, using the capacity method. The

StringBuilder object has dynamically increased the capacity to contain all of the

values that you have appended.

Example Solution:

public void displayPersonInfo(){

name.append(“Fernando”);

name.append(“ “);

name.append(“Gonzalez”);

// Display the name object

System.out.println(“Name: + name.toString());

// Display the capacity

System.out.println(“Name object capacity: “ +

name.capacity());

}

e. Click Save to compile. Run the PersonTwoTest.java file. The output should look

similar to the screenshot below. Notice that the capacity has been increased from the
initial setting of 8 to accommodate the full name.

5. Populate and manipulate the phoneNumber object. Here you append a string of digits and

then use the insert method to insert dashes at various index locations, achieving the

format “nnn-nnn-nnnn”. The table below provides high-level instructions for this task. More
detailed instructions can be found below the table.

Step Window/Page Description Choices or Values

a. Append a 10 digit String value to

the phoneNumber object

Example: “5551234567”

b. Insert a dash (“-“) after the first three

characters of the phoneNumber.
Use the insert method that takes an int

value for the offset and inserts a String

value. (Use offset number 3)

c. Insert another dash after the first
seven characters of the
phoneNumber

Reminder: The previous insertion pushed the
remaining characters over one index.

d. Display the phoneNumber object Use the toString method of the

StringBuilder class

a. Use the append method of the StringBuilder class to append a String value

consisting of ten numbers.

b. Insert a dash (“-“) at offset position 3. This puts the dash at the 4th position in the String,
pushing all of the remaining characters over one position. The syntax for this method is
shown below:

<object reference>.insert(int offset, String str);

Example: Consider the following string,

“5551234567”

The offset position 3 occurs at the number 1. (Index numbers begin at 0.) If the dash is
inserted at offset position 3, it pushes the number currently at that position and all
remaining numbers over to the next offset position.

c. Insert a dash at offset position 7 (where the number 4 is currently placed).

d. Use System.out.println to display the output from the StringBuilder object’s

toString method.

Solution:

phoneNumber.append("5551234567");

phoneNumber.insert(3, "-");

phoneNumber.insert(7, "-");

System.out.println("Phone number: " +

phoneNumber.toString());

6. Click Save to compile. Run the PersonTwoTest.java file. Check the output from the

displayPersonInfo method. Ensure that the dashes appear between the third and

fourth digits and between the sixth and seventh digits.

7. Use the substring method of the StringBuilder class to get just the first name value

in the name object. Use the substring method that takes the start index and the end

index for the substring. Display this value using System.out.println.

Syntax:

<object reference>.substring(int start, int end);

Note: Indexes for characters in the StringBuilder class, much like array indexes, are
zero-based. The first character in the StringBuilder is located at position (or index) 0.

While the start index of the substring method is inclusive (it is the actual index of the

first character you want returned), the end index is exclusive (it is the index of the
character just to the right of the last character of your substring.)

Example Solution:

// Assumes the first name “Fernando”

System.out.println(“First name: “ + name.substring(0,8));

8. Save and again run the PersonTwoTest.java. Check the output and make any

adjustments necessary to the index numbers to get the correct first name value.

Practice 5-3: Examining the Java API Specification

Overview

In this practice, you examine the Java API specification to become familiar with the
documentation and how to look up classes and methods. You are not expected to understand
everything you see. As you progress through this course, the Java API documentation should
make more sense.

Assumptions

The Java SE 7 API specification is installed locally on your machine.

Tasks

1. To view the Java SE7 API specification (also referred to as “javadocs”), double-click the
shortcut on your desktop (entitled “Java JDK7 1.7.0 API Docs”).

The opening page of the javadocs consists of three frames as shown above. It allows you
to navigate through the hierarchy of classes in the API by class name or by package.
(Note: you learn about packages later in this course)

2. Using the Packages frame, select the java.lang package. The All Classes frame now

changes to display only classes within that package.

3. Find the Math class and click it to display its documentation in the main frame.

4. Answer the following questions about the Math class:

a. How many methods are there in the Math class?

b. How many fields are there in the Math class? _

Answer:

a.) 54

b.) 2

5. Select several other classes in the Classes panel to answer this question: What class does
every class refer to at the top of the page? Hint: What class is the superclass to all
classes?

Answer: Object

6. Find the String class and identify the methods of this class. Which methods enable you to

compare two strings?_ _

Answer: compareTo and compareToIgnoreCase

7. Close the Practice06 project in NetBeans.

