
 

Practices for Lesson 12 
 

Practices Overview 

In these practices, you will use the java.util.concurrent package and sub-packages of 

the Java programming language. 



 

(Optional) Practice 13-1: Using the java.util.concurrent Package 
 

Overview 

In this practice, you will modify an existing project to use an ExecutorService from the 

java.util.concurrent package. 

 
Assumptions 

You have reviewed the sections covering the use of the java.util.concurrent package. 

 
Summary 

You will create a multithread networking client that will rapidly read the price of a shirt from 
several different servers. Instead of manually creating threads, you will leverage an 

ExecutorService from the java.util.concurrent package. 

 
Tasks 

1. Open the ExecutorService project as the main project. 

a. Select File > Open Project. 

b. Browse to D:\labs\12\practices. (or your other folder) 

c. Select ExecutorService and select the "Open as Main Project" check box. 

d. Click the Open Project button. 

2. Expand the project directories. 

3. Run the NetworkServerMain class in the com.example.server package by 
right-clicking the class and selecting Run File. 

4. Open the NetworkClientMain class in the com.example.client package. 

5. Run the NetworkClientMain class package by right-clicking the class and selecting Run 
File. Notice the amount of time it takes to query all the servers sequentially. 

6. Create a NetworkClientCallable class in the com.example.client package. 

 Add a constructor and a field to receive and store a RequestResponse reference. 

 Implement the Callable interface with a generic type of RequestResponse. 

public class NetworkClientCallable implements 

Callable<RequestResponse> 

 Complete the call method by using a java.net.Socket and a 

java.util.Scanner to read the response from the server. Store the result in the 

RequestResponse object and return it. 

Note: You may want to use a try-with-resource statement to ensure that the 

Socket and Scanner objects are closed. 

7. Modify the main method of the NetworkClientMain class to query the servers 
concurrently by using an ExecutorService. 

a. Comment out the contents of the main method. 

b. Obtain an ExecutorService that reuses a pool of cached threads. 



 

c. Create a Map that will be used to tie a request to a future response. 

Map<RequestResponse, Future<RequestResponse>> callables = new 

HashMap<>(); 

d. Code a loop that will create a NetworkClientCallable for each network request. 

 The servers should be running on localhost, ports 10000–10009. 

 Submit each NetworkClientCallable to the ExecutorService. Store each 

Future in the Map created in step 7c. 

e. Shut down the ExecutorService. 

f. Await the termination of all threads within the ExecutorService for 5 seconds. 

g. Loop through the Future objects stored in the Map created in step 7c. Print out the 

servers’ response or an error message with the server details if there was a problem 
communicating with a server. 

8. Run the NetworkClientMain class by right-clicking the class and selecting Run File. 
Notice the amount of time it takes to query all the servers concurrently. 

9. When done testing your client, be sure to select the ExecutorService output tab and 

terminate the server application. 



 

(Optional) Practice 12-2: Using the Fork-Join Framework 
 

Overview 

In this practice, you will modify an existing project to use the Fork-Join framework. 

 
Assumptions 

You have reviewed the sections covering the use of the Fork-Join framework. 

 
Summary 

You are given an existing project that already leverages the Fork-Join framework to process the 

data contained within an array. Before the array is processed, it is initialized with random 

numbers. Currently the initialization is single-thread. You must use the Fork-Join framework to 

initialize the array with random numbers. 

 
Tasks 

1. Open the ForkJoinFindMax project as the main project. 

a. Select File > Open Project. 

b. Browse to D:\labs\12\practices. (or your other folder) 

c. Select ForkJoinFindMax and select the "Open as Main Project" check box. 

d. Click the Open Project button. 

2. Expand the project directories. 

3. Open the Main class in the com.example package. 

 Review the code within the main method. Take note of how the compute method splits 

the data array if the count of elements to process is too great. 

4. Open the FindMaxTask class in the com.example package. 

 Review the code within the class. Take note of the for loop used to initialize the data 
array with random numbers. 

5. Create a RandomArrayAction class in the com.example package. 

a. Add four fields. 

private final int threshold; 

private final int[] myArray; 

private int start; 

private int end; 

b. Add a constructor that receives parameters and saves their values within the fields 
defined in the previous step. 

public RandomArrayAction(int[] myArray, int start, int end, int 

threshold) 

c. Extend the RecursiveAction class from the java.util.concurrent package. 

Note: A RecursiveAction is used when a ForkJoinTask with no return values is 

needed. 



 

d. Add the compute method. Note that unlike the compute method from a 

RecursiveTask, the compute method in a RecursiveAction returns void. 

protected void compute() { } 

e. Begin the compute method. If the number of elements to process is below the 
threshold, you should initialize the array. 

for (int i = start; i <= end; i++) { 

myArray[i] = ThreadLocalRandom.current().nextInt(); 

} 

Note: ThreadLocalRandom is used instead of Math.random()because 

Math.random() does not scale when executed concurrently by multiple threads and 

would eliminate any benefit of applying the Fork-Join framework to this task. 

f. Complete the compute method. If the number of elements to process is above or 
equal to the threshold you should find the midway point in the array and create two 

new RandomArrayAction instances for each section of the array to process. Start 

each RandomArrayAction. 

Note: When starting a RecursiveAction, you can use the invokeAll method 

instead of the fork/join/compute combination typically seen with a 

RecursiveTask. 

RandomArrayAction r1 = new RandomArrayAction(myArray, start, 

midway, threshold); 

RandomArrayAction r2 = new RandomArrayAction(myArray, midway + 

1, end, threshold); 

invokeAll(r1, r2); 

6. Modify the main method of the Main class to use the RandomArrayAction class. 

a. Comment out the for loop within the main method that initializes the data array with 

random values. 

b. After the line that creates the ForkJoinPool, create a new RandomArrayAction. 

c. Use the ForkJoinPool to invoke the ForkJoinPool. 

7. Run the ForkJoinFindMax project by right-clicking the project and choosing Run. 

Note: If you have a multi-CPU system you can use System.currentTimeMillis() to 

benchmark the sequential and Fork-Join solutions. 


