

Practices for Lesson 10

Practices Overview

In these practices, you experiment with field access and encapsulation, and create and use
overloaded constructors. A challenge practice is included here for those of you who have extra
time and want to be challenged.

Practice 10-1: Implementing Encapsulation in a Class

Overview

In this practice, you create a class containing private attributes and try to access them in
another class. This practice has two sections.

 Implementing encapsulation in a class

 Accessing encapsulated attributes of a class

Assumptions

This practice assumes that the following files appear in the practice folder for this lesson,

Lesson10, and consequently also in the Practice11 project.

 DateOneTest.java

 DateTwoTest.java

 DateThreeTest.java

Implementing Encapsulation in a Class

1. Create a new project called “Practice11”. Refer to the Practice 1-2, Steps 3 and 4 if you
need assistance.

2. Create a new Java Class called “DateOne”. Declare three member fields of type int

named: day, month, and year. Give public access to all the member fields.

3. Open the DateOneTest class. In the main method, do the following:

a. Create and initialize an object of type DateOne.

b. Assign different numeric values to the member fields of the DateOne object.

c. Display the value of the member fields of the DateOne object. Concatenate them into a
single String with your choice of date formatting.

Note: The back slash (\) character is a special character in the Java language called an
“escape character”. If you want to use it as part of your date format, use two back slashes
together to have one of the backslashes appear in the String. Example: day + “\\” + month
results in a single backslash between day and month. There are no restrictions for using a
forward slash.

Solution:

public static void main(String args[]){

DateOne date = new DateOne();

date.day = 16;

date.month = 10;

date.year = 2011;

System.out.println(“DateOne: “+date.day+ ”/” +date.month+

”/” +date.year);

}

4. Save and compile your program.

5. Run the DateOneTest class to test the program.

6. Create another new Java Class called “DateTwo” similar to DateOne with three member

fields (day, month, year).

7. Set the access modifier for the member fields to private.

8. Open the DateTwoTest class and perform the same steps as in Step 3, however in this
case, create an instance of the DateTwo class instead of the DateOne class. The other
lines of code remain the same.

Note: NetBeans warns you with an error icon next to each line that references the fields of
the DateTwo object.

Examine the warning message by putting your cursor over any of the red icons. It says that

“day has private access in DateTwo” (similar message for each field). Although NetBeans

lets you click Save without issuing a compiler error, it only saves the file. It does not compile
the code or create the DateTwoTest.class file.

Accessing Encapsulated Attributes of a Class

In this task, you create a class with private attributes but enable them to be manipulated from
another class.

9. Create a new Java Class called “DateThree” and add the same three private fields as the

DateTwo class.

10. Add a public get method for the day field. This method should return an int. In the body

of the method, return the day field. Example:

public int getDay(){

return day;

}

11. Add a public set method for the day field. This method returns void but takes an

argument of type int. In the body of the method assign the argument to the day field.

Example:

public void setDay(int day){

this.day = day;

}

12. Add a similar get and set method for both the month and the year fields. Read the Hint

below first to save some time.

Hint

Most IDEs automatically create the get and set methods for private fields in a class. This

is part of a feature called “Refactoring”. In NetBeans, you can take advantage of this feature
by selecting (highlighting) one of the private fields and right-clicking it. Select Refactor >
Encapsulate Fields from the context menu.

The Encapsulate Fields window opens. Select the get and set method check boxes for the
remaining fields. You may want to also set the Javadoc setting to None to streamline your
method code. Click Refactor to close the window and create the methods.

13. Open the DateThreeTest class.

14. In the main method, declare an object of type DateThree called “date”. Create an instance

of the DateThree class.

15. Using the DateThree object reference, invoke the setMonth, setDay, and setYear
methods of the DateThree object to set the three values of a date. Example:

date.setMonth(10);

date.setDay(16);

date.setYear(2011);

16. Complete the main method by displaying the entire date in the format of your choice. For

example:

System.out.println(The date is: ”+ date.getMonth() +

“/” + date.getDay() + “/” + date.getYear());

17. Save and compile your program. Run the DateThreeTest class to test it.

Challenge Practice 10-2: Adding Validation to the DateThree Class

This practice is optional. Check with your instructor for recommendations about which
optional practices to do. Perform this practice only if you are certain that you have enough time
to perform all of the non-optional practices.

Overview

In this practice, you add a setDate method to the DateThree class that performs validation on

the date part values that are passed into the method.

Assumptions

This practice assumes that you have finished Practice 10-1.

Tasks

1. In the DateThree class, add a public setDate method that takes three arguments of type

int. These values are assigned to the day, month, and year fields respectively, as in the

following example:

public void setDate(int d, int m, int y)

Perform the validation indicated in the table below before assigning the argument values to
the fields. Detailed steps are provided after the table.

Step Code Description Choices or Values

a. Valid values for the year field Between 1000 and 10000

b. Valid values for the month field 1 – 12

c. Valid values for the day field 30, 31, 28, 29

Depends on the month

Note

Use a switch case statement to determine the month. Use if/else statements to

perform the validation. Display an error message if the value is invalid.

a. In the setDate method, add the following if/else statement to check the validity of

the year argument. Note: The year field is set to 0 in the case of an invalid year

argument. You check for a 0 year value later.

if (y > 1000 && y < 10000){

this.year = y;

} else {

System.out.println(y + “ is not a valid year.”);

this.year = 0;

}

b. Create a switch statement that evaluates the month argument. Months 1, 3, 5, 7, 8,

10, and 12 have 31 days. Check for these values first in the switch statement. If the

month argument equals any of these cases, assign the month argument to the month

field, then include an if/else statement to test the value of the day argument. It

should be between 1 and 31, inclusive. If it is not, display an error message and set the

day field to 0.

Example:

switch (m) {

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:

this.month = m;

if (d > 0 && d < 32){

this.day = d;

} else {

System.out.println(d + “ is an invalid day for “

+ month);

this.day = 0;

}

break;

//(switch statement continues in step c)

c. Use the following logic to complete the switch statement. In the case block for the

month of February (case 2), you must also test for a leap year if the day argument is

29. The logic for the remaining months is similar to what you wrote for months
containing 31 days.

...

case 2:

this.month = m;

if(d > 0 && d < 29) {

this.day = d;

} // check if year is a leap year when d==29 and m==2

else if (d == 29){

if(((y % 4 == 0) && !(y % 100 == 0)) || (y % 400 == 0)){

this.day = d;

} else {

System.out.println(“Invalid day. “ +

“Day cannot be 29 unless the year is a leap year.”);

this.day = 0;

} // end of inner if/else

} // end of outer if/else

break;

case 4:

case 6:

case 9:

case 11:

this.month = m;

if(d > 0 && d < 31){

this.day = d;

} else {

System.out.println(“Invalid day. Must be 1 to 30.”);

this.day = 0;

}

break;

default:

System.out.println(m + “ is an invalid month.”);

this.month = 0;

break;

} // end switch

2. Add one more method called displayDate. In this method, first check for values of zero in

day, month, or year. If any of these has a 0 value, print an “Invalid date” message.

Otherwise, display the date using a date format of your choice. Example:

public void displayDate(){

if(day == 0 || month == 0 || year == 0){

System.out.println(“Invalid date.”);

}

else {

System.out.println(“Date is: “ + month +”/”+

day +”/”+ year);

}

}

3. Open the DateThreeTest class and, using the setDate and displayDate methods, write

code to perform the following tests:

 Test with valid values for month, day and year

 Test with invalid value for month 14

 Test with invalid value for day 35

 Test with invalid year 200

Example for the first test:

date.setDate(30,12,2011);

date.displayDate();

4. Save and compile your program and run the DateThreeTest class. You should see an
output similar to the following:

Compare the output to your code to match up the messages with the particular test that
was run.

Practice 10-3: Creating Constructors to Initialize Objects

Overview

In this practice, you create a class and use constructors to initialize objects.

Assumptions

This practice assumes that the RectangleTest.java file appears in the practice folder for this

lesson, Lesson10, and consequently also in the Practice11 project.

Tasks

1. Create a new Java Class called “Rectangle”. Add two private fields of type int and

name them width and height.

2. Add a constructor with no arguments (a “no args constructor”). The following table provides
the high-level steps to create this constructor. If you need more help, use the detailed
instructions below the table.

Step Description Choices or Values

a. Syntax for declaring a no args
constructor

public <class_name>()

b. Initialize the private fields width = 25

height = 10

c. Print a message “Default rectangle created: width = 25, height = 10"

a. In the Rectangle class, declare a public no args constructor as follows:

public Rectangle(){

}

b. Assign the width field to the value 25 and the height field to the value 10.

c. Use System.out.println to display the message shown in Step b of the table

above.

3. Add a second constructor that accepts two int arguments: w and h (for “width” and

“height”). The following table provides the high-level steps to complete this constructor. If
you need more help, use the detailed instructions below the table.

Step Code Description Choices or Values

a. Set height to h and width to w after

validating the argument values
h and w should be > 0 and < 30

b. Display a message for each
condition

Error message if the numbers are invalid

Message indicating that a rectangle has been
created (show the height and width)

a. In the constructor, add an if/else statement to ensure that the values passed into

the constructor are within the acceptable range of 1 through 29. If both arguments are
valid, assign the argument to its respective member field.

b. After assigning the values, print a message that indicates that a rectangle has been

created with the designated values. Include the width and height values in the

message. If the argument values are not valid, display an error message.

Solution:

public Rectangle(int w, int h){

if(w > 0 && w < 30 && h > 0 && h < 30){

width = w;

height = h;

System.out.println("Rectangle created: width = "

+width+ " and height = "+height);

}

else {

System.out.println(“Invalid width and/or height. “+

“Each must be positive and less than 30.”);

}

}

4. Create a getArea method that calculates and returns the area of the rectangle (width *

height).

Solution:

public int getArea(){

return width * height;

}

5. Create a draw method that prints the rectangle shape, as determined by its width and

height, in a series of rows containing asterisks (*). The following steps provide more
detailed instructions:

a. Create a nested for loop to draw the rectangle using asterisks.

b. The outer for loop iterates through the rows of the rectangle. The number of rows

corresponds to the value of the height field.

c. The inner for loop iterates through the columns of each row. The number of columns

corresponds to the value of the width field.

Solution:

public void draw(){

for(int rowCounter=0;rowCounter<height;rowCounter++){

for(int colCounter=0;colCounter<width;colCounter++){

System.out.print(“*”);

} // end of each row

System.out.println(); // create a new line

} // end of all rows

} // end of draw method

6. Save and compile your program.

7. Open the RectangleTest class. In the main method, declare and create two Rectangle

objects, r1 and r2, such that:

 r1 is created with the no args constructor

 r1 is drawn immediately after it is created (use the draw method)

 r2 is created using the constructor with arguments

 r2 is drawn and the area is printed

Solution:

public static void main(String args[]){

// Rectangle with default values (no args)

Rectangle r1 = new Rectangle();

r1.draw();

//Rectangle from args constructor

Rectangle r2 = new Rectangle(15,5);

System.out.println(“Area of r2 is: “+r2.getArea());

r2.draw();

}

8. Save and compile your program. Run the RectangleTest class to test it. The output should
look similar to this:

