

Practices for Lesson 3

Practices Overview

In these practices, you examine and modify existing Java programs and also run them to test
the program.

Practice 3-1: Viewing and Adding Code to an Existing Java Program

Overview

In this practice, you are given a completed Java program. You open it, examine the lines of
code, modify it, compile it, and then test it by executing the program.

Assumptions
 Quotation.java and QuotationTest.java appear in the folder for this practice:

Lesson03

Tasks

1. Create a new project from existing Java source, just as you did in Practice 1-2. The high-
level steps are shown in the table below. If you need further detail, refer to Practice 1-2,
steps 3 and 4.

Step Window/Page Description Choices or Values

a. Menu File > New Project

b. New Project wizard | Choose Project
step

Category: Java

Project: Java Project with Existing Sources

Next

c. New Project with Existing Sources
wizard | Name and Location step

Project Name: Practice04

Next

d. New Project with Existing Sources
wizard | Existing Sources step

Add Folder: Lesson03

Finish

e. Project Properties window | Source
category

Source/Binary Format: JDK 7

OK

Note: The Projects window should now look like this when the <default package> node is

expanded:

2. Double-click the Quotation.java file in the Projects window to open it for editing.

3. Identify the field and the method contained within this class, using the table below:

Member Variable or Name

Field variable:

Method name:

Solution: Field variable – quote; Method name – display.

4. In the display method, write the code to display the quote field. Hint: Use the

System.out.println method shown in the Student Guide for this lesson. Be sure to

finish the line of code with a semicolon.

Note: You will notice, as you type the code, that NetBeans’ code assist feature provides
feedback and help whenever you pause in your typing. For instance, if you stop at some
point at which the code, as is, would not compile successfully, it displays a red exclamation

mark in the left margin. If you pause after typing the dot (“.”) following System or out, it

gives you context sensitive help in the form of a list of methods and fields that would be
valid for the particular class to the left of the dot. You can select from the list instead of
typing.

Solution:

System.out.println(quote);

5. Click the Save button to save and compile Quotation.java.

6. Open the QuotationTest.java file in the editor and examine its main method. It creates an

instance of the Quotation class and then calls its display method.

7. Run the QuotationTest class by right-clicking QuotationTest.java in the Projects window
and selecting Run File. The output from the display method appears in the Output window.

Note: You were able to skip the Compile step because when you select Run File,

NetBeans first compiles not only the class you selected to run, but also any referenced

classes within that class (Quotation.java).

8. Edit the Quotation.java file now to change the default value of the quote field.

9. Run QuotationTest again to verify the output.

10. In the Editor pane, close Quotation.java and QuotationTest.java.

Practice 3-2: Creating and Compiling a Java Class

Overview

In this practice, you create a Java class and compile it. You also create another Java class to
test the previous class.

Assumptions

None

Tasks

1. Create a new Java class in the Practice03 project using the NetBeans wizard. The high-
level steps for this task are shown in the table below. If you need more assistance, you can
use the detailed steps that follow the table.

Step Window/Page Description Choices or Values

a. Menu File > New File

b. New File window | Choose File Type
step

Category: Java

File Types: Java Class

Next

c. New Java Class window | Name and
Location step

Class Name: Shirt

Finish

a. From the main menu, select File > New File.

b. The New File wizard opens and you are on step 1 “Choose File Type”. Select Java in
the Category column. Select Java Class in the File Types column. Click Next.

c. In the New Java Class window, you are on step 2 “Name and Location”. Enter “Shirt”
as the Class Name. Click Finish.

The Java source file for the new class now appears in the editor ready for you to fill in
the details.

2. Enter the Java code syntax for the Shirt class shown in this lesson of the Student Guide.

3. Click the Save button to save and compile the Shirt class. Any red error icons in the left
margin should disappear after saving if there were no compilation errors. If necessary, fix
any errors that appear in the Output window and save again.

Note: The Navigator pane (lower left corner of NetBeans) for the Shirt class now shows

the Members view of the class. Notice the color coding that distinguishes between fields
and methods. Both of these are considered “Members” of the class.

4. Follow the instructions from Step 1 to create another new class. This will be a Test class, so

it will need a main method. To accommodate that change, the table below shows the

substitutions in the Step 1 instructions you should make as you go through the New Class
wizard. For more detail, see the screenshots following the table.

Step Window/Page Description Choices or Values

a. New File window | Choose File Type
step

File Types: Java Main Class

b. New File window | Name and Location
step

Name: ShirtTest

a. In the Choose File Type step, select Java Main Class instead of Java Class.

b. In the Name and Location step, enter ShirtTest as the name.

5. Replace the To Do: comment in the main method with the two lines of code that appear in

the main method for the ShirtTest class shown in this lesson of the Student Guide.

6. Save and compile the code by clicking Save.

7. Run the ShirtTest class by right-clicking ShirtTest.java in the Projects window. Look for the

output of the displayInformation method in the Output window.

8. Find the class files that were generated by NetBeans when you ran the program. Click the
Files tab to open the Files window and find Shirt.class and ShirtTest.class as shown below.

9. Open (or return focus to) the Shirt.java file. Modify the values of ShirtID and price.

10. Run the ShirtTest class again. Verify that the modified values are shown in the Output
window.

Practice 3-3: Exploring the Debugger

Overview

Virtually every Java IDE provides a debugger. They tend to offer the same core features and
work very similarly. In this practice, you debug the ShirtTest program using the NetBeans
debugger. You set breakpoints, examine field values, and modify them as you step through
each line of code.

Assumptions

None

Tasks

1. Set a breakpoint in the ShirtTest class. Click in the left margin of the editor, next to the
following line of code:

myShirt = new Shirt();

A pink square appears in the margin, indicating a breakpoint.

2. Run the debugger by right-clicking on the ShirtTest file in the Projects window and selecting
Debug File.

3. The debugger starts the program and stops at the breakpoint. In the Editor panel you
should now see a different icon that points with a green arrow to the line of code.

This line of code has not yet been executed.

4. Several other changes have occurred in the NetBeans window.

 A new toolbar appears, containing buttons that you use when debugging.

 Move your cursor over each of the toolbar buttons to read the toolbar tip explaining
what each button does. The buttons are described below.

 The first button, Finish Debugger Session, stops the debugging session.

 The second button, Pause, pauses the execution of the debugger.

 The third button Continue the execution, either to the next breakpoint or to the

end of the program.

 The fourth button, Step Over, moves the program forward to the next line of

code in the current class (in this case, the ShirtTest class).

 The fifth button, Step Over Expression, allows you to step over an entire

expression to the next line of code in the current class.

 The sixth button, Step Into, allows you to step into another class referenced in

this current line of code.

 The seventh button, Step Out, allows you to step back out of a class that you

stepped into.

 The last button, Run to Cursor, takes execution to the line of code where the

cursor appears.

 The panel at the bottom of the window changes to show debugging output and
variables and other useful information during a debug session.

 In the Variables panel, you see all variables that are visible to the current class.
Remember that the execution was stopped before the Shirt class object has been

instantiated. Consequently, you do not see the myShirt variable in this panel.

5. Click the Step Over button to move to the next line of code.

6. The arrow now points to the line of code that calls the displayInformation method on

the myShirt object. In the Values window, you now see the myShirt variable. Expand it

to see all of the fields of this Shirt object.

At this point, the displayInformation method has not yet been executed. You could

change the values of the object’s fields right now, using the Variables window if you wanted

to. However, instead, you “step into” the myShirt object and change the values during the

execution of the displayInformation method.

7. Click the Step Into button to step into the displayInformation method.

8. The arrow icon is pointing to the first executable line of code within the
displayInformation of the Shirt class. In the Variables window, expand this to see

the fields of this object.

9. In the Value column double-click each field’s value and edit it to change the value. Ensure
that you use the correct value for the data type expected and enclose any character data
types with the type of quote mark indicated. After editing the final field, click the tab button
so that the text you typed into the edit buffer is accepted.

10. Click the Step Out button to return to the next line of code in the ShirtTest class. The

displayInformation method will have completed.

11. Notice that the myShirt object field variables reflect the changes you made while in the

method.

12. Click the Continue button now to finish execution and end the debug session.

13. Click the Output tab to view the output.

You have now experienced some of the most commonly used features of a typical IDE
Debugger. You may wish to use the debugger in remaining labs to help you diagnose and fix
problems you may experience in your programs.

14. Close the Practice04 project in NetBeans. In the Projects window, right-click Practice04 and
select Close from the context menu.

