

Practices for Lesson 8

Practices Overview

In these practices, you use for loops and while loops to process data within arrays or

ArrayLists. Two challenge practices are included here for those who have extra time and wish to
be challenged.

Practice 8-1: Writing a Class that Uses a for Loop

Overview

In this practice, you create the Counter class that uses a simple for loop to print a sequence

of numbers.

Assumptions

The CounterTest.java file appears in the practice folder for this lesson, Lesson08

Tasks

1. Create a new project from existing source called Practice09. Set the Source Package

Folder to point to D:\labs\les09. Remember to also change the Source/Binary Format

property. If you need further details, refer to Practice 1-2, Step 3.

2. Create a new Java class called “Counter”. Declare and initialize a public final int field

called MAX_COUNT. Assign the value 100 to this field.

Hint: Use the keyword final to designate this is as a constant field.

3. Create a method called displayCount that does the following:

 Counts from 1 to the value of the MAX_COUNT constant, using a for loop. Increment

the value of the loop variable by 1.

 Displays the value of the loop variable if it is divisible by 12. Display this on a single
line, separated by a space.

Hints

 Example of a for loop:

for (int i= 1; i < 10; i++) // loops 9 times

 Use the modulus operator (%) to check divisibility by 12. If it is divisible by 12, the
result of the modulus operation will be zero.

 Use the System.out.print method to keep all displayed values on the same line.

Solution:

public void displayCount(){

for(int count = 1; count <= MAX_COUNT; count++){

if (count % 12 == 0) {

System.out.print(count + “ ”);

} // end if

} // end for

} // end method

4. Save and compile your program. Test it by running the CounterTest class.

5. You should receive the following list of numbers as an output:

12 24 36 48 60 72 84 96

Practice 8-2: Writing a Class that Uses a while Loop

Overview

In this practice, you write a class named Sequence that displays a sequence starting with the
numbers 0 and 1. Successive numbers in the sequence are the sum of the previous two
numbers. For example: 0 1 1 2 3 5 8 13 21… This sequence is also called the Fibonacci series.

Assumptions

The SequenceTest.java file appears in the practice folder for this lesson, Lesson08, and

consequently in your project.

Tasks

1. Create a new Java class called “Sequence” with three fields called firstNumber,

secondNumber, and nextNumber. Assign the values of 0 and 1 to the firstNumber and

secondNumber fields, respectively. Also declare a public final int called

SEQUENCE_LIMIT. Set its value to 100.

2. Create a method called displaySequence. Use the following high-level steps to code the

method. If you need more help, detailed instructions are provided following these steps:

a. Print the value of firstNumber and secondNumber to start the sequence. Separate

all numbers in the sequence by a space.

b. Calculate the sum of firstNumber and secondNumber and assign the sum to

nextNumber.

c. Create a while loop with the following characteristics:

 boolean expression: Repeat if the value of nextNumber is less than or equal to

SEQUENCE_LIMIT.

 code block:

 Print the value of nextNumber.

 Assign the value of secondNumber to firstNumber and the value of

nextNumber to secondNumber.

 Recalculate the value of nextNumber to be the sum of firstNumber and

secondNumber.

d. After the while loop, use the System.out.println method to create a new line.

Detailed instructions:

a. Before the while loop begins, use the System.out.print method to print

firstNumber and secondNumber, concatenating a space to the end of each

variable in your print statements.

b. Set nextNumber equal to firstNumber + secondNumber.

c. Start a while loop that evaluates the following expression in determining whether to

loop again:

while(nextNumber <= SEQUENCE_LIMIT)

 Within the while block, do the following:

 Print the nextNumber field. Add a space to the end of it.

 Set firstNumber equal to secondNumber, and secondNumber equal to

nextNumber.

 Set nextNumber equal to firstNumber + secondNumber.

d. Outside the while loop block, use System.out.println to create a new line for the

“Build Successful…” message that appears after the sequence.

Solution:

public class Sequence{

public int firstNumber = 0;

public int secondNumber = 1;

public int nextNumber;

public final int SEQUENCE_LIMIT = 100;

public void displaySequence(){

// Print the first two numbers

System.out.print(firstNumber + “ “);

System.out.print(secondNumber + “ “);

// Calculate the next number

nextNumber = firstNumber + secondNumber;

while(nextNumber <= SEQUENCE_LIMIT){

// Print the next number of the sequence

System.out.print(nextNumber + “ “);

firstNumber = secondNumber; // new first number

secondNumber = nextNumber; // new second number

// Calculate the next potential number

nextNumber = firstNumber + secondNumber;

} // end of while

// Finish it off with a carriage return

System.out.println();

} // end of method

} // end of class

3. Save and compile your program. Run the SequenceTest class to test it.

Challenge Practice 8-3: Converting a while Loop to a for Loop

This practice is optional. Check with your instructor for recommendations about which
optional practices to do. Perform this practice only if you are certain that you have enough time
to perform all of the non-optional practices.

Overview

In this practice, you create a new class, ChallengeSequence, based on the Sequence class you

created in the last practice. You modify the displaySequence method to use a for loop

instead of a while loop.

Assumptions

This practice assumes that you have completed Practice 8-2. It also assumes that the

ChallengeSequenceTest.java file appears in the practice folder for this lesson, Lesson08, and

consequently in your project.

Tasks

1. Create a new Java class called “ChallengeSequence”. Copy all the code that occurs
between the outer (class) brackets of the Sequence class and paste it inside the outer
brackets of the ChallengeSequence class.

2. Create an additional final field called SEQUENCE_COUNT and assign a value of 10 to it. Be

sure that you don’t change any of the other field names.

3. In the displaySequence method, modify the while loop to a for loop such that only the

first 10 values ot the Fibonacci series are displayed.

Hints

 Remember that the first two numbers in the sequence are displayed before the loop

begins. Your for loop must display the remaining eight values.

 There are a several ways of handling the discrepancy between the SEQUENCE_COUNT

value and the number of values that need to be displayed within the loop. One
approach is to adjust the initial count in the loop.

One Possible Solution:

public void displaySequence(){

System.out.print(firstNumber + “ “);

System.out.print(secondNumber + “ “);

nextNumber = firstNumber + secondNumber;

for(int count = 2; count < SEQUENCE_COUNT; count++){

// Start at 2 and loop until you get to 9 (8 numbers)

System.out.print(nextNumber + “ “);

firstNumber = secondNumber;

secondNumber = nextNumber;

nextNumber = firstNumber + secondNumber;

}

System.out.println();

}

4. Save and compile your program. Run the ChallengeSequenceTest class to test your code.
Your output should display the following series:

0 1 1 2 3 5 8 13 21 34

Practice 8-4: Using for Loops to Process an ArrayList

Overview

In this practice, you create two new methods in two different classes. One of the methods uses

a traditional for loop to display the values in an ArrayList. The other method uses an

enhanced for loop to display the values in the ArrayList. This practice contains two

sections:

 Using a for Loop with the VacationScaleTwo Class

 Using an Enhanced for loop with the NamesListTwo Class

Assumptions

This practice assumes that the following files appear in the practice folder for this lesson,

Lesson08 and consequently, in your project:

 VacationScaleTwo.java

 VacationScaleTwoTest.java

 NamesListTwo.java

Using a for Loop with the VacationScaleTwo Class

1. Open the VacationScaleTwo class in the editor. This is similar to the VacationScale class

you wrote for the practices in Lesson 8, except an ArrayList is used to store vacation

days instead of an array.

2. Add a new method called displayVacationDays. High-level instructions for this task are

provided in the table below. More detailed instructions can be found following the table.

Step Code Description Choices or Values

a. Use a for loop to loop through the

elements of the vacationDays

ArrayList.

Use the size method of the ArrayList in

the boolean expression that determines the
end of the loop.

b. Within the loop, display each value

of the ArrayList and its position in

the list with a suitable label.

Use the get method of the ArrayList

together with System.out.println to

display the value.

a. In the displayVacationDays method, add a for loop with the following criteria:

for(int years = 0; years < vacationDays.size(); years++)

b. In the for loop block, use System.out.println to print the value of each

ArrayList element. Use the get method of the ArrayList, passing the years

variable as an argument. It references the current index number of the vacationDays

list.

System.out.println(“The vacation for “ + years +

“ years of service is: “ + vacationDays.get(years));

3. Save and compile your program, and then run the VacationScaleTwoTest class to test it.
You should see an output similar to this:

Using an Enhanced for Loop with the NamesListTwo Class

4. Open the NamesListTwo class in the editor. This is similar to the NamesList class that you

saw in Lesson 8. It has only one method, setList. This method initializes the

ArrayList and then prints the size of the list.

5. Add a new method to the NamesListTwo class called displayNames. You use an

enhanced for loop in this method to process the ArrayList. High-level instructions for

this task are provided in the table below. More detailed instructions can be found following
the table.

Step Code Description Choices or Values

a. Display an introductory message to
describe the list that follows.

b. Start the enhanced for loop

(remember that an ArrayList is

defined to hold elements of type

Object)

for (Object name : listOfNames)

c. In the for block, display the current

element of the ArrayList.

Use the name reference

a. Use the System.out.println method to print the message:

“Names in the ArrayList: ”

b. Start the enhanced for loop as follows:

for (Object name : listOfNames)

Note: The name variable is a reference to the current element in the listOfNames

ArrayList for each iteration of the for loop.

c. Within the for loop block use System.out.println to print the name reference.

Solution:

public void displayNames(){

System.out.println(“Names in the ArrayList: ”);

for(Object name : listOfNames){

System.out.println(name);

}

}

6. Create a new Java Main Class called NamesListTwoTest.

7. In the main method, do the following:

a. Declare and initialize a local variable of type NamesListTwo called names.

NamesListTwo names = new NamesListTwo();

b. Invoke the setList method of the names object.

c. Invoke the displayNames method of the names object.

8. Save and compile your program. Run the NamesListTwoTest class to test it.

9. You should see an output from the program similar to the screenshot below:

Practice 8-5: Writing a Class that Uses a Nested for Loop to Process

a Two Dimensional Array

Overview

In this practice, you create and process a two-dimensional array using a nested for loop (one

loop within another loop). This practice is based on the scenario of a classroom. A classroom
has 12 desks arranged in a rectangular grid comprising three rows and four columns. Students
are allocated a desk at the position found vacant first, by traversing each row.

The following table shows the class map as a grid. Each cell represents a desk. Each cell
contains the coordinates of the desk position in the class map.

XXXX Column 1 Column 2 Column 3 Column 4

Row 1 0,0 0,1 0,2 0,3

Row 2 1,0 1,1 1,2 1,3

Row 3 2,0 2,1 2,2 2,3

Assumptions

This practice assumes that the ClassMapTest.java file appears in the practice folder for this

lesson, Lesson08, and consequently in your project.

Tasks

1. Create a new Java class called “ClassMap”.

2. In the class, declare two public fields as follows:

public String[][] deskArray;

public String name;

3. Create a new method called setClassMap. In this method, initialize the deskArray to

have three rows and four columns:

deskArray = new String[3][4];

4. Create another new method called setDesk. This method assigns a new student

(identified by the name field that is set by the ClassMapTest) to an empty desk in the class

map. Define the method according to the steps below:

a. Traverse the deskArray to identify the first vacant element in it. Use a nested for
loop for this purpose. For example:

for(int row=0; row<3; row++){

for(int col=0; col<4; col++){

if(deskArray[row][col]==null){

b. If you find a null value in the deskMap (in other words, if you find an empty desk),

assign the value of the name field to the vacant element.

c. Within the inner for loop (the one that iterates over the columns of a row), set a local

boolean variable (flag) to true if you assigned the name to an element. Check the

value of the flag variable in the last line of the outer for loop. If it is true, there is no

need to continue looping through the rest of the rows, so break out of the for loop.

Similarly, you can check the value of the flag after the close of the outer for loop. If

the value is still false, it means that all desks are taken (no null values were found).
Print a message indicating that all desks are occupied.

d. Print the position of the desk for the student and exit out of the loops. Use a break
statement to branch out of a running loop.

Solution:

public void setDesk() {

boolean flag= false;

for(int row=0; row<3; row++){ // start of row loop

for(int col=0; col<4; col++){ // start of column loop

if(deskArray[row][col]==null){

deskArray[row][col] = name;

System.out.println

(name +” desk is at position: Row:”

+ row + ” Column:”+col);

flag = true;

break; // drop out of column loop

} // end of if

} // end of inner/column for loop

if (flag == true){

break; // drop out of row loop

} // end of if

} // end of row for loop

if (flag == false){

System.out.println(“All desks occupied.”);

} // end of if

} // end of method

Note: You test this code a little later.

5. Create another new method called displayDeskMap. In this method, traverse the

deskArray in the same way you did in the last step. For each element in the array, print

the name in that element (or print “null”). The output should be in the form of grid.

Hint: Use a combination of print and println method calls to achieve the grid format.

The grid should look similar to this:

Ann Bond Cindy Donald

null null null null

null null null null

Solution:

public void displayDeskMap() {

for(int row = 0; row < 3; row++){

for(int col = 0; col < 4; col++){

System.out.print(“ “+ deskArray[row][col] +” “);

}

System.out.println(); // carriage return between rows

}

}

6. Save and compile your program.

7. Open the ClassMapTest class and examine the code in the main method. It first calls

setClassMap to initialize the array. Next it assigns a value to the name field of the

myClassMap object and then invokes setDesk. It does this four times, with a different

name value each time. Finally, it invokes displayDeskMap.

8. Run the ClassMapTest class to test your program.

9. If you do not plan to perform Practice 9-6 (an optional challenge practice), close the
Practice09 project in NetBeans now.

Challenge Practice 8-6: Adding a Search Method to the ClassMap
Program

This practice is optional. Check with your instructor for recommendations about which

optional practices to perform.

Overview

In this practice, you add another method to the ClassMap class. This method searches through

the deskArray to find a certain name.

Assumptions

This practice assumes that you have completed Practice 8-5.

Tasks

1. In the ClassMap class, add another new method called searchDesk.

2. In the searchDesk method, do the following:

a. Create a nested for loop to traverse through the deskArray.

b. If the array element is not null, compare the value of the name field with the value of

the element. For example:

if(deskArray[row][col] != null &&

deskArray[row][col].equals(name)){

c. Print the position of the desk if the names are equal.

d. Print an error message if the name is not found in the deskArray.

e. Use the break statement to branch or exit out of the loops wherever required.

Solution:

public void searchDesk() {

boolean flag= false;

for(int row=0; row<3; row++){

for(int col=0; col<4; col++){

if(deskArray[row][col] != null &&

deskArray[row][col].equals(name)){

System.out.println

(name +” Desk Position: Row: ”+row+” Column: “

+col);

flag = true;

break;

} // end of if

} // end of column loop

if (flag == true){

break;

} // end of if

} // end of row loop

if (flag == false){

System.out.println(“Desk not allocated for: ”+name);

} // end of if

} // end of method

3. In the ClassMapTest class, uncomment the lines of code that set the name value of

myClassMap object and invoke its searchDesk method (this combination occurs twice).

4. Save and compile your program. Run the ClassMapTest class to test the program.

5. This is the conclusion of the Lesson 8 practices. Close the Practice09 project now.

