

Practices for Lesson 6

Practices Overview

In these practices, you create if and if / else constructs and also create a switch construct.

Practice 6-1: Writing a Class that Uses the if/else Statement

Overview

In this practice, you create classes that use if and if/else constructs. There are two sections

in this practice. In the first section, you create the DateTwo class that uses if / else

statements to display the day of the week based on the value of a variable. In the second
section, you create the Clock class that uses if/else statements to display the part of the day,

depending on the time of day.

Assumptions

The following files appear in the practice folder for this lesson, Lesson06:

 ClockTest.java

 DateTwoTest.java

Writing a Class that Uses an if/else Statement

In this task, you create a DateTwo class that evaluates a numeric field in order to determine the

day of the week that corresponds to that number. You use an if/else construct to do this.

1. Create a new project from existing sources called Practice07. Set the Source Package

Folder to point to Lesson06. Remember to also change the Source/Binary Format

property. If you need further details, refer to Practice 1-2, Steps 3 and 4.

2. Create a new Java class called “DateTwo”. Declare and initialize a member field for this

class called dayNumber. The value assigned should be a number between 1 and 7

(inclusive) where the number 1 represents Monday (beginning of the week) and 7
represents Sunday (end of the week).

Hint: Use the int data type.

3. Create a displayDay method in the DateTwo class. High level instructions for this task

are provided in the table below. More detailed instructions can be found following the table.

Step Window/Page Description Choices or Values

a. Use an if/else construct to

inspect the value of dayNumber.
In each if block, display the corresponding

day of the week

b. Display an error message if an
invalid number is found

This should be the last condition you check

a. The following pseudo code will help you write the body of the displayDay method.

Each if condition should check the value of dayNumber. Hint: Use the == sign. Within

the if blocks, print out the day of the week (“Monday”, “Tuesday”, etc.)

if (condition1) {

// print corresponding day

}else if (condition2) {

// print corresponding day

}else if (condition3)

…

}else {

// if none of the conditions is true

}

b. If dayNumber does not equal a number between 1 and 7 (inclusive), print out an error

message. This will be in the final else block.

4. Save, compile, and execute your class by running the DateTwoTest class. Check the output
in the Output window.

5. Repeat step 4 several times by assigning different values to the DateTwo member field.

Writing Another Class That Uses if/else Statements

In this task, you write a class called “Clock” that uses if/else statements to display the part of

day depending upon the time of day. Use the following table as a guideline.

Time of Day Part of Day

8:01 to 12:00 Morning

12:01 to 17:00 Afternoon

17:01 to 24:00 Evening

0:01 to 8:00 Early Morning

6. Create a new Java class called “Clock” that contains an int field called currentTime.

Initialize this field to hold the hour of the day. (Example: 400 = 04:00, 1505 = 15:05).

7. In the Clock class, create a displayPartOfDay method. Display the part of the day

associated with the value of the currentTime field. For example, if the currentTime

field equals 2100, you would display “Evening”. You need not check for values outside the
range of 1 to 2400.

Hint: Use a similar if/else construct to what you used in the previous task.

Solution:

public void displayPartOfDay() {

if(currentTime >= 801 && currentTime <= 1200){

System.out.println(“Morning”);

}else if(currentTime >= 1201 && currentTime <= 1700){

System.out.println(“Afternoon”);

}else if(currentTime >= 1701 && currentTime <= 2400){

System.out.println(“Evening”);

}else {

System.out.println(“Early Morning”);

}

}

8. Save, compile, and execute your program by running the ClockTest class.

9. Repeat Step 8 several times by assigning different values to the currentTime member

variable.

Note: A leading zero indicates an octal value. Therefore, the program does not compile if
you set currentTime to 0800. You need to specify currentTime as 800 for 8:00 AM to
successfully compile the program.

Practice 6-2: Writing a Class that Uses the Switch Statement

Overview

In this practice, you create a class called “Month” that uses switch statements to display the
name of the month based upon the numeric value of a field.

Assumptions

The MonthTest.java file appears in the practice folder for this lesson, Lesson06

Tasks

1. Create a new Java class called “Month”.

2. Declare an int field in the Month class called monthNumber. Assign a value to the field

that is between 1 and 12 (inclusive), where 1 represents the month of January and 12
represents the month of December.

3. Create a new method in the Month class called displayMonth. This method uses a

switch construct to inspect the value of the monthNumber field and display the

corresponding name of the month. The displayMonth method should also display an

error message if an invalid number is used.

Hint: The syntax for a switch statement is:

switch (<variable>){

case <value1>:

// do something

break;

case <value2>:

// do something

break;

… // more cases

default:

// possibly error checking

break;

} // end of switch

4. Save, compile, and execute your program by running the MonthTest class.

5. Repeat step 4 several times assigning different values to the monthName field.

6. Close the Practice07 project in NetBeans.

