

Practices for Lesson 10

Practices Overview

In the first practice, you will use the JDK 7 NIO.2 API to write an application to create custom

letters by merging a template letter with a list of names, utilizing Files and Path methods. In

the second practice, you will use the walkFileTree method to copy all the files and directories

from one folder to another on the disk. In the final optional practice, you will use the same

method to write an application to recursively find and delete all the files that match a supplied

pattern.

Practice 10-1: Summary Level: Writing a File Merge Application

Overview

In this practice, you will use the Files.readAllLines method to read the entire contents of

two files: a form template, and a list of names to send form letters to. After creating a form letter

with a name from the name list, you will use the Files.write method to create the custom

letter. You will also use the Pattern and Matcher classes that you saw in the “String

Processing” lesson.

Assumptions

You participated in the lecture for this lesson. Note there are Netbeans projects in the example

directory to help you understand how to use the Files class readAllLines and write

methods.

Tasks

1. Open the file FormTemplate in the resources directory.

Note that this is a form letter with a string <NAME> that will be replaced by a name from the

name list file.

2. Open the file NamesList.txt in the resources directory.

a. This file contains the names to send the form letters to.

b. Add your name to the end of the list.

c. Save the file.

3. Open the project FormLetterWriter in the practices directory.

4. Expand the FormLetterWriter class. Notice that this class contains the main method, and

that the application requires two parameters: One is the path to the form letter template, and
the second is the path to the file containing the list of names to substitute in the form letter.

a. After checking for a valid number of arguments, the main method then checks to see

whether the Path objects point to valid files.

b. The main method creates an instance of the FileMerge class with the form letter

Path object and the list of names Path object.

c. In a try block, the main method calls the writeMergedForm method of the

FileMerge class. This is the method that you will write in this practice.

5. Expand the FileMerge class.

a. Note the writeMergedForms method is empty. This is the method that you will write

in this practice.

b. The mergeName method uses the Pattern object defined in the field declarations to

replace the string from the form template (first argument) with a name from the name

list (second argument). It returns a String. For example, it replaces "Dear <NAME>,"

with "Dear Wilson Ball,".

c. The hasToken method returns a boolean to indicate whether the string passed in

contains the token. This is useful to identify which string has the token to replace with
the name from the name list.

6. Code the writeMergedForms method. The overall plan for this method is to read in the

entire form letter, line by line, and then read in the entire list of names and merge the

names with the form letter, replacing the placeholder in the template with a name from the
list and then writing that out as a file. The net result should be that if you have ten names in

the name list, you should end up with ten custom letter files addressed to the names from
the name list. These ten files will be written to the resources directory.

a. Read in all of the lines of the form letter into the formLetter field, and all of the lines

from the name list into the nameList field.

Note: Because writeMergedForms throws IOException, you do not need to put

these statements into a try block. The caller of this method is responsible for handling
any exceptions thrown.

b. Create a for loop to iterate through the list of names (nameList) strings.

c. Inside this for loop, create a new List object to hold the strings of the form letter. You

need this new List to hold the modified form template strings to write out.

d. Still inside the for loop, you will need to create a name for the custom letter. One easy

way to do this is to use the name from the name list. You should replace any spaces in

the name with underscores for readability of the file name. Create a new Path object

relative to the form template path.

e. Create another for loop, nested in the first loop, to iterate through the lines of the form

template and look for the token string ("<NAME>") to replace with the String name

from the nameList. Use the hasToken method to look for the String that contains the

token string and replace that string with one containing the name from the nameList.

Use the mergeName method to create the new String. Add the modified String and all

of the other Strings from the formLetter to the new customLetter List.

f. Still inside the first for loop, write the modified List of Strings that represents the

customized form letter to the file system by using the Files.write method. Print a

message that the file write was successful and close the outer for loop.

g. Save the FileMerge class.

7. Modify the FormLetterWriter project to pass the form letter file and the name list file to

the main method.

a. Right-click the project and select Properties.

b. Select Run.

c. In the Arguments text field, enter: D:\labs\resources\FormTemplate.txt
D:\labs\resources\NamesList.txt (or your other folder)

d. Click OK.

8. Run the project. You should see new files created with the names from the name list. Each
file should be customized with the name from the name list. For example, the

Tom_McGinn.txt file should contain:

Dear Tom McGinn,

It has come to our attention that you would like to prove

your Java Skills. May we recommend that you consider

certification from Oracle? Oracle has globally recognized

Certification exams that will test your Java knowledge and

skills.

Start with the Oracle Certified Java Associate exam, and

then continue to the Oracle Certified Java Programmer

Professional for a complete certification profile.

Good Luck!

Oracle University

Practice 10-1: Detail Level: Writing a File Merge Application

Overview

In this practice, you will use the Files.readAllLines method to read the entire contents of

two files: a form template, and a list of names to send form letters to. After creating a form letter

with a name from the name list, you will use the Files.write method to create the custom

letter. You will also use the Pattern and Matcher classes that you saw in the “String

Processing” lesson.

Assumptions

You participated in the lecture for this lesson. Note there are Netbeans projects in the example

directory to help you understand how to use the Files class readAllLines and write

methods.

Tasks

1. Open the file FormTemplate in the resources directory.

a. Select File > Open File

b. Navigate to the resources directory in D:\labs (or your other folder)

c. Select the file FormTemplate.txt and click the Open button.

Note that this is a form letter with a string placeholder token <NAME> that will be replaced

by a name from the name list file.

2. Open the file NamesList.txt in the resources directory.

a. This file contains the names to send the form letters to.

b. Add your name to the end of the list.

c. Save the file.

3. Open the project FormLetterWriter in the practices directory.

a. Select File > Open Project.

b. Browse to D:\labs\10\practices. (or your other folder)

c. Select FormLetterWriter.

d. Select the “Open as Main Project” check box.

e. Click the Open Project button.

4. Expand the FormLetterWriter class. Notice that this class contains the main method,

and that the application requires two parameters: One is the path to the form letter
template, and the second is the path to the file containing the list of names to substitute in

the form letter.

a. After checking for a valid number of arguments, the main method then checks to see

whether the Path objects point to valid files.

b. The main method creates an instance of the FileMerge class with the form letter

Path object and the list of names Path object.

c. In a try block, the main method calls the writeMergedForm method of the

FileMerge class. This is the method that you will write in this practice.

5. Expand the FileMerge class.

a. Note the writeMergedForms method is empty. This is the method that you will write

in this practice.

b. The mergeName method uses the Pattern object defined in the field declarations to

replace the string from the form template (first argument) with a name from the name

list (second argument). It returns a String. For example, it replaces "Dear <NAME>,"

with "Dear Wilson Ball,".

c. The hasToken method returns a boolean to indicate whether the string passed in

contains the token. This is useful to identify which string has the token to replace with
the name from the name list.

6. Code the writeMergedForms method. The overall plan for this method is to read in the

entire form letter, line by line, and then read in the entire list of names and merge the

names with the form letter, replacing the placeholder in the template with a name from the
list and then writing that out as a file. The net result should be that if you have ten names in

the name list, you should end up with ten custom letter files addressed to the names from
the name list. These ten files will be written to the resources directory.

a. Create an instance of the default Charset. This argument is required for the

Files.readAllLines method.

Charset cs = Charset.defaultCharset();

b. Read in all of the lines of the form letter into the formLetter field, and all of the lines

from the name list into the nameList field.

Note: Because writeMergedForms throws IOException, you do not need to put

these statements into a try block. The caller of this method is responsible for handling
any exceptions thrown.

formLetter = Files.readAllLines(form, cs);

nameList = Files.readAllLines(list, cs);

c. Create a for loop to iterate through the list of names (nameList) strings.

d. Inside this for loop, create a new List object to hold the strings of the form letter. You

will need this new List to hold the modified form template strings to write out.

for (int j = 0; j < nameList.size(); j++) {

customLetter = new ArrayList<>();

e. Still inside the for loop, you need to create a name for the custom letter. One easy

way to do this is to use the name from the name list. You should replace any spaces in

the name with underscores for readability of the file name. Create a new Path object

relative to the form template path.

String formName = nameList.get(j).replace(' ',

'_').concat(".txt");

Path formOut = form.getParent().resolve(formName);

f.

Create another for loop, nested in the first loop, to iterate through the lines of the form

template and look for the token placeholder string ("<NAME>") to replace with the

String name from the nameList. Use the hasToken method to look for the String

that contains the token string and replace that string with one containing the name from

the nameList. Use the mergeName method to create the new String. Add the

modified String and all of the other Strings from the formLetter to the new

customLetter List.

for (int k = 0; k < formLetter.size(); k++) {

if (hasToken(formLetter.get(k))) {

customLetter.add(mergeName(formLetter.get(k),

nameList.get(j)));

} else {

customLetter.add(formLetter.get(k));

}

}

g. Finally, still inside the first for loop, write the modified List of Strings that

represents the customized form letter to the file system by using the Files.write

method. Print a message that the file write was successful and close the outer for loop.

Files.write(formOut, customLetter, cs);

System.out.println ("Wrote form letter to: " +

nameList.get(j));

} // closing brace for the outer for loop

h. Reformat the code to ensure that you have everything in the right place. Press the Ctrl-
Alt-F key combination or right-click in the editor pane and choose Format.

i. Save the FileMerge class.

7. Modify the FormLetterWriter project to pass the form letter file and the name list file to

the main method.

a. Right-click the project and select Properties.

b. Select Run.

c. In the Arguments text field, enter: D:\labs\resources\FormTemplate.txt
D:\labs\resources\NamesList.txt (or your other folder)

d. Click OK.

8. Run the project. You should see new files created with the names from the name list. Each

file should be customized with the name from the name list. For example, the

Tom_McGinn.txt file should contain:

Dear Tom McGinn,

It has come to our attention that you would like to prove

your Java Skills. May we recommend that you consider

certification from Oracle? Oracle has globally recognized

Certification exams that will test your Java knowledge and

skills.

Start with the Oracle Certified Java Associate exam, and

then continue to the Oracle Certified Java Programmer

Professional for a complete certification profile.

Good Luck!

Oracle University

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Java File I/O (NIO.2)

Chapter 11 - Page 10

Practice 10-2: Summary Level: Recursive Copy

Overview

In this practice, you write Java classes that use the FileVisitor class to recursively copy one

directory to another.

Assumptions

You participated in the lecture for this lesson.

Tasks

1. Open the project RecursiveCopyExercise in the directory

D:\labs\10\practices. (or your other folder)

2. Expand the Source Packages folder and subfolders and look at the Copy.java class.

a. Note that the Copy.java class contains the main method.

b. The application takes two arguments, a source and target paths.

c. If the target file or directory exists, the user is prompted whether to overwrite.

d. If the answer is yes (or the letter y), the method continues.

e. An instance of the CopyFileTree class is created with the source and target.

f. This instance is then passed to the walkFileTree method (with the source Path

object).

You will need to provide method bodies for the methods in the CopyFileTree.java
class.

3. Open the CopyFileTree.java class.

a. This class implements the FileVisitor interface. Note that FileVisitor is a

generic interface, and this interface is boxed with the Path class. This allows the

interface to define the type of the arguments passed to its methods.

b. The CopyFileTree implements all the methods defined by FileVisitor.

c. Your task is to write method bodies for the preVisitDirectory and visitFile

methods. You will not need the postVisitDirectory method, and you have been

provided a method body for the visitFileFailed method.

4. Write the method body for preVisitDirectory. This method is called for the starting

node of the tree and every subdirectory. Therefore, you should copy the directory of the
source to the target. If the file already exists, you can ignore that exception (because you

are doing the copy because the user elected to overwrite.)

a. Start by creating a new directory that is relative to the target passed in, but is the node

name from the source. The method call to do this is:

Path newdir = target.resolve(source.relativize(dir));

b. In a try block, copy the directory passed to the preVisitDirectory method to the

newdir that you created.

c. You can ignore any FileAlreadyExistsException thrown, because you are

overwriting any existing folders and files in this copy.

d. Catch any other IOExceptions, and use the SKIP_SUBTREE return to avoid

repeated errors.

5. Write the method body for the visitFile method. This method is called when the node

reached is a file. The file is passed as an argument to the method.

a. As with the preVisitDirectory, you must rationalize the file reached (source path)

with the path that you wanted for the target. Use the same method call as above (only

using file instead of dir):

Path newdir = target.resolve(source.relativize(file));

b. As in the preVisitDirectory method, use the Files.copy method in a try block.

Make sure that you pass REPLACE_EXISTING in as an option to overwrite any existing

file in the directory.

c. Catch any IOException thrown and report an error.

d. Fix any missing imports.

e. Save your class.

6. Test your application by copying a directory (ideally with subdirectories) to another location

on the disk. For example, copy the D:\labs\10 directory to D:\Temp.

a. Right-click the project and select Properties.

b. Click Run.

c. Enter the following as Arguments:

D:\labs\10 D:\Temp

d. Click OK.

7. Run the project and you should see the following message:

Successfully copied D:\labs\10 to D:\Temp

a. Run the project again, and you should be prompted:

Target directory exists. Overwrite existing files? (yes/no):

Practice 10-2: Detailed Level: Recursive Copy

Overview

In this practice, you write Java classes that use the FileVisitor class to recursively copy one
directory to another.

Assumptions

You participated in the lecture for this lesson.

Tasks

1. Open the project RecursiveCopyExercise in the directory

D:\labs\10\practices. (or your other folder)

a. Select File > Open Project.

b. Browse to D:\labs\10\practices. (or your other folder)

c. Select RecursiveCopyExercise.

d. Select the “Open as Main Project” check box.

e. Click the Open Project button.

2. Expand the Source Packages folder and subfolders and look at the Copy.java class.

a. Note that the Copy.java class contains the main method.

b. The application takes two arguments, a source and target paths.

c. If the target file or directory exists, the user is prompted whether to overwrite.

d. If the answer is yes (or the letter y), the method continues.

e. An instance of the CopyFileTree class is created with the source and target.

f. This instance is then passed to the walkFileTree method (with the source Path

object).

You will need to provide method bodies for the methods in the CopyFileTree.java
class.

3. Open the CopyFileTree.java class.

a. This class implements the FileVisitor interface. Note that FileVisitor is a

generic interface, and this interface is boxed with the Path class. This allows the

interface to define the type of the arguments passed to its methods.

b. The CopyFileTree implements all the methods defined by FileVisitor.

c. Your task is to write method bodies for the preVisitDirectory and visitFile

methods. You will not need the postVisitDirectory method, and you have been

provided a method body for the visitFileFailed method.

4. Write the method body for preVisitDirectory. This method is called for the starting

node of the tree and every subdirectory. Therefore, you should copy the directory of the

source to the target. If the file already exists, you can ignore that exception (because you
are doing the copy because the user elected to overwrite.)

a. Start by creating a new directory that is relative to the target passed in, and is the node
name from the source. The method call to do this is:

Path newdir = target.resolve(source.relativize(dir));

b. In a try block, copy the directory passed to the preVisitDirectory method to the

newdir that you created.

try {

Files.copy(dir, newdir);

c. You can ignore any FileAlreadyExistsException thrown, because you are

overwriting any existing folders and files in this copy.

} catch (FileAlreadyExistsException x) {

// ignore

d. Do catch any other IOExceptions, and use the SKIP_SUBTREE return to avoid

repeated errors.

} catch (IOException x) {

System.err.format("Unable to create: %s: %s%n",

newdir, x);

return SKIP_SUBTREE;

}

5. Write the method body for the visitFile method. This method is called when the node

reached is a file. The file is passed as an argument to the method.

a. As with the preVisitDirectory, you must rationalize the file reached (source path)

with the path that you wanted for the target. Use the same method call as above (only

using file instead of dir):

Path newdir = target.resolve(source.relativize(file));

b. As in the preVisitDirectory method, use the Files.copy method in a try block.

Make sure that you pass REPLACE_EXISTING in as an option to overwrite any existing

file in the directory.

try {

Files.copy(file, newdir, REPLACE_EXISTING);

Note: To use the REPLACE_EXISTING enum type, you must import the

java.nio.file.StandardCopyOption enum class using a static import, like this:

import static java.nio.file.StandardCopyOption.*;

c. Catch any IOException thrown and report an error.

} catch (IOException x) {

System.err.format("Unable to copy: %s: %s%n", source, x);

}

d. Fix any missing imports.

e. Save your class.

6. Test your application by copying a directory (ideally with subdirectories) to another location

on the disk. For example, copy the D:\labs\10 directory to D:\Temp.

a. Right-click the project and select Properties.

b. Click Run.

c. Enter the following as Arguments:

D:\labs\10 D:\Temp

d. Click OK.

7. Run the project and you should see the following message:

Successfully copied D:\labs\10 to D:\Temp

a. Run the project again, and you should be prompted:

Target directory exists. Overwrite existing files? (yes/no):

(Optional) Practice 10-3: Summary Level: Using PathMatcher to

Recursively Delete

Overview

In this practice, you write a Java main that creates a PathMatcher class and uses

FileVisitor to recursively delete a file or directory pattern.

Assumptions

You have completed the previous practice.

Tasks

1. Open the project RecursiveDeleteExercise in the practices directory.

2. Expand the Source Packages folders.

3. Open the Delete.java class file. This is the class that contains the main method. The

main class accepts two arguments: the first is the starting path and the other the pattern to
delete.

4. You must code the remainder of this class. Look at the comments for hints as to what to do.

a. Start by creating a PathMatcher object from the search string passed in as the

second argument. To obtain a PathMatcher instance, you will need to use the

FileSystems class to get a path matcher instance from the default file system.

b. Create a Path object from the first argument.

c. If the starting path is a file, check it against the pattern using the PathMatcher

instance that you created. If there is a match, delete the file, and then terminate the
application.

d. If the starting path is a directory, create an instance of the DeleteFileTree with the

starting directory and the PathMatcher object as initial arguments in the constructor.

Pass the starting directory and the file tree to a Files.walkFileTree method to

recursively look for the pattern to delete.

e. Fix any missing imports.

f. Save the Delete class.

5. Open the DeleteFileTree class file. This class implements FileVisitor. This class

recursively looks for instances of files or directories that match the PathMatcher object

passed into the constructor. This class is complete with the exception of the delete

method.

a. The delete method is called by the preVisitDirectory and visitFile methods.

You must check whether the file or directory reached by these methods matches the
pattern.

b. We only want to match the path name at the node, so use the Path.getFileName
method to obtain the file name at the end of the full path.

c. If the name matches, use the Files.delete method to attempt to delete the file

pattern and print a result statement, or print an error if an IOException is thrown.

d. Save the DeleteFileTree class.

6. Run the Delete application using a temporary directory.

a. For example, if you completed the first practice, you can delete all the Java class files

from the D:\Temp directory.

b. Right-click the project and select Properties.

c. Click Run and enter the following in the Arguments text field:

D:\Temp\examples *.class

d. Run the project.

(Optional) Practice 10-3: Detailed Level: Using PathMatcher to

Recursively Delete

Overview

In this practice, you write a Java main that creates a PathMatcher class and uses

FileVisitor to recursively delete a file or directory pattern.

Assumptions

You have completed the previous practice.

Tasks

1. Open the project RecursiveDeleteExercise in the practices directory.

a. Select File > Open Project.

b. Browse to D:\labs\10\practices. (or your other folder)

c. Select RecursiveDeleteExercise.

d. Click the Open Project button.

2. Expand the Source Packages folders.

3. Open the Delete.java class file. This is the class that contains the main method. The

main class accepts two arguments: the first is the starting path and the other the pattern to
delete.

4. You must code the remainder of this class. Look at the comments for hints as to what to do.

a. Start by creating a PathMatcher object from the search string passed in as the

second argument. To obtain a PathMatcher instance, you will need to use the

FileSystems class to get a path matcher instance from the default file system.

PathMatcher matcher =

FileSystems.getDefault().getPathMatcher("glob:" + args[1]);

b. Create a Path object from the first argument.

Path root = Paths.get(args[0]);

c. If the starting path is a file, check it against the pattern using the PathMatcher
instance that you created. If there is a match, delete the file, and then terminate the
application.

if (!Files.isDirectory(root)) {

Path name = root.getFileName();

if (name != null && matcher.matches(name)) {

try {

Files.delete(root);

System.out.println("Deleted :" + root);

System.exit(0);

} catch (IOException e) {

System.err.println("Exception deleting file: " +

root);

System.err.println("Exception: " + e);

System.exit(-1);

}

}

}

d. If the starting path is a directory, create an instance of the DeleteFileTree with the

starting directory and the PathMatcher object as initial arguments in the constructor.

Pass the starting directory and the file tree to a Files.walkFileTree method to

recursively look for the pattern to delete.

DeleteFileTree deleter = new DeleteFileTree(root, matcher);

try {

Files.walkFileTree(root, deleter);

} catch (IOException e) {

System.out.println("Exception: " + e);

}

e. Fix any missing imports.

f. Save the Delete class.

5. Open the DeleteFileTree class file. This class implements FileVisitor. This class

recursively looks for instances of files or directories that match the PathMatcher object

passed into the constructor. This class is complete with the exception of the delete

method.

a. The delete method is called by the preVisitDirectory and visitFile methods.

You must check whether the file or directory reached by these methods matches the
pattern.

b. We only want to match the path name at the node, so use the Path.getFileName
method to obtain the file name at the end of the full path.

Path name = file.getFileName();

c. If the name matches, use the Files.delete method to attempt to delete the file

pattern and print a result statement, or print an error if an IOException is thrown.

if (matcher.matches(name)) {

//if (name != null && matcher.matches(name)) {

try {

Files.delete(file);

System.out.println("Deleted: " + file);

} catch (IOException e) {

System.err.println("Unable to delete: " + name);

System.err.println("Exception: " + e);

}

}

d. Save the DeleteFileTree class.

6. Run the Delete application using a temporary directory.

a. For example, if you completed the first practice, you can delete all the Java class files

from the D:\Temp directory.

b. Right-click the project and select Properties.

c. Click Run and enter the following in the Arguments text field:

D:\Temp\examples *.class

d. Run the project.

