

Practices for Lesson 4

Practices Overview

In these practices, you create several Java classes that declare, initialize and manipulate field

variables. Solutions for these practices can be found in Lesson04.

Practice 4-1: Declaring Field Variables in a Class

Overview

In this practice, you create a class containing several fields. You declare the fields, initialize
them, and then test the class by running the CustomerTest program.

Assumptions

This practice assumes that the CustomerTest Java source file appears in the practice folder for

this lesson: Lesson04

Tasks

1. Close any open project in NetBeans. In the Projects window, right-click the project name
and select Close from the context menu.

2. Create a new project from existing Java source, using the values in the table below when
you complete the New Project wizard.

Step Window/Page Description Choices or Values

a. Choose Project step Category: Java

Project: Java Project with Existing Sources

b. Name and Location step Project Name: Practice05

c. Existing Sources step Add Folder: Lesson4

d. Project Properties window Set the Source/Binary Format property to
JDK 7

Note: If you need a more detailed reminder of how to create a new project, refer to Practice
1-2, steps 3 and 4.

Solution: The Projects window should show four Java source files beneath the <default

package> node.

3. Create a new Java class. The table below provides the high level steps. If you need more
assistance, refer to Practice 2-2, step 1.

Step Window/Page Description Choices or Values

a. Menu File > New File

b. New File window | Choose File Type
step

Category: Java

File Types: Java class

Next

c. New Java Class window | Name and
Location step

Class Name: Customer

Finish

4. With Customer.java open for editing in the Editor pane, declare and initialize the fields
described in the table below. If you need more assistance, more detailed steps are provided
following the table.

Field Name Data Type Default Value

customerID int <your choice>

status char <your choice>

‘N’ for new, ‘O’ for old

totalPurchases double 0.0

a. The syntax of a variable declaration and initialization is:

modifier type variable = <value>;

b. Assume that all fields are public.

c. Include a comment at the end of each line describing the field.

Solution: This shows one possible solution for the customerID declaration and

initialization. The others are similar.

public int customerID = 0; // Default ID for a customer

5. Add a method within the Customer class called displayCustomerInfo. This method

uses the System.out.println method to print each field to the screen with a

corresponding label (such as “Purchases are: “).

Solution:

public void displayCustomerInfo () {

System.out.println(“Customer ID: “ + customerID);

// continue in a similar fashion for all other fields

}

6. Click Save to compile the class.

Note: You will notice that the red error indicator next to the CustomerTest class in the
Projects window disappears after saving the Customer class. The reason is that the

CustomerTest class references the displayCustomerInfo method, which did not exist

before you saved the file. NetBeans recognized a potential compilation error in the
CustomerTest class, due to the missing method.

7. Run the CustomerTest class to test your code. If you are prompted with a warning
indicating that there are compilation errors within the project, click Run Anyway.

Note: All of the examples and practices in this course require a test class. In most

situations, the test class is provided. However, in some situations, you create the class.

8. Check the output to be sure that it contains the values you assigned.

Practice 4-2: Using Operators and Performing Type Casting to
Prevent Data Loss

Overview

In this practice, you use operators and type casting. This exercise has three sections. In each
section you create one Java class, compile it, and test it.

Assumptions

The following Java source files appear in the practice folder for this lesson: Lesson4

 PersonTest.java

 OrderTest.java

 TemperatureTest.java

Calculating Age Using Operators

In this task, you use operators to calculate age in days, minutes, seconds, and milliseconds.

1. Select File > New File from the menu to create a new Java class called Person.

2. Using the editor, add the following fields to store age in years, days, minutes, seconds, and
milliseconds. Provide meaningful names for all the fields. The table below provides more
detailed information:

Year Part Data Type Additional Info

Years int Initialize to 1

Days int Do not initialize

Minutes long Do not initialize

Seconds long Do not initialize

Milliseconds long Do not initialize

Hint: You can declare multiple variables of the same type in one line by separating the
variables by a comma. Be sure to end the line with a semicolon, just as you would any
other line of code.

3. Create a new public method in this class called calculateAge.

a. The method should calculate age in days, minutes, seconds, and milliseconds,
assigning the value to the relevant field. The following table gives you the calculations:

Year Part Calculated By:

Days Year * 365

Seconds Days * 24 * 60 * 60

Minutes Seconds / 60

Milliseconds Seconds * 1000

b. Print out all the ages in various units, each in a separate line with an appropriate
message. For example “You are 3156000 seconds old.”

Solution:

public void calculateAge () {

ageDays = ageYears * 365;

ageSeconds = ageDays * 24 * 60 * 60;

ageMinutes = ageSeconds / 60;

ageMilliseconds = ageSeconds * 1000;

System.out.println ("You are " + ageDays + " days old.");

System.out.println("You are " + ageMinutes +

" minutes old.");

System.out.println("You are " + ageSeconds +

" seconds old.");

System.out.println("You are " + ageMilliseconds +

" milliseconds old.");

}

4. Save to compile the class and then run the PersonTest.java file.

5. Perform several tests, by setting the value of age as 1, 24, and 80 in the Person class.

Solution:

For one year, the results should be: You are 365 days old. You are 31536000 seconds
old. You are 525600 minutes old. You are 31536000000 milliseconds old.

Using Casting to Prevent Data Loss

In this section you use casting to ensure that data loss does not occur in your programs.

6. Create a new Java class called Order

7. Add three fields to the Order class as follows:

Field Name Data Type Initialized Value

orderValue long 0L (zero L)

itemQuantity int 10_000_000

itemPrice int 555_500

Note: The underscores used to initialize the int values improve the readability of your

code. They have no effect on the actual numeric value of the field. The compiler strips them
out. This is one of the new language features of Java 7.

8. Create a calculateTotal method that calculates the total order value (itemQuantity *

itemPrice) and print it. Be sure to type cast either itemQuantity or itemPrice to a

long so that the temp storage used to hold the outcome of the multiplication is large

enough to contain a long value.

Solution:

public void calculateTotal(){

orderValue = (long)itemQuantity * itemPrice;

System.out.println(“Order total: “+ orderValue);

}

9. Save Order.java and then test it by running OrderTest.java. Verify the result by using

a calculator.

Solution: Result should be 5555000000000

10. Edit the Order.java file to remove the type casting done in the calculateTotal
method.

11. Compile and run OrderTest again to see the resulting data loss that occurs without type
casting.

Creating a Temperature Program

In this section, you write a program to convert temperature from Fahrenheit to Celsius.

12. Create a new Java class called Temperature. Add a member field to the Temperature class
that stores the temperature in Fahrenheit. Declare the field variable with an appropriate

data type, such as int, float, or double.

13. Create a calculateCelsius method. Convert the Fahrenheit temperature to Celsius by

subtracting 32, multiplying by 5, and dividing by 9. Be sure to observe the rules of
precedence when typing this expression.

Hint: The rules of precedence are listed here for your convenience.

 Operators within a pair of parentheses

 Increment and decrement operators

 Multiplication and division operators, evaluated left to right

 Addition and subtraction operators, evaluated left to right

Solution: This is one possible solution.

public class Temperature {

public float fahrenheitTemp = 78.9F;

public void calculateCelsius() {

System.out.println ((fahrenheitTemp – 32) * 5 / 9);

}

}

14. Compile the Temperature class and test it using the TemperatureTest class. Confirm that
you get the same result running the program as you do when doing this calculation using a
calculator.

15. Test the program using several values of temperature.

16. When you have finished experimenting with different values, close the Practice05 project.

