

Practices for Lesson 8

Practices Overview

In these practices, you will use try-catch statements, extend the Exception class, and use
the throw and throws keywords.

Practice 8-1: Summary Level: Catching Exceptions

Overview

In this practice, you will create a new project and catch checked and unchecked exceptions.

Assumptions

You have reviewed the exception handling section of this lesson.

Summary

You will create a project that reads from a file. The file-reading code will be provided to you.
Your task is to add the appropriate exception-handling code.

Tasks

1. Create a new ExceptionPractice project as the main project.

a. Select File > New Project.

b. Select Java under Categories and Java Application under Projects. Click the Next
button.

c. Enter the following information in the “Name and Location” dialog box:

 Project Name: ExceptionPractice

 Project Location: D:\labs\08\practices. (or you other directory)

 (checked) Create Main Class: com.example.ExceptionMain

 (checked) Set as Main Project

d. Click the Finish button.

2. Add the following line to the main method.

System.out.println("Reading from file:" + args[0]);

Note: A command-line argument will be used to specify the file that will be read. Currently

no arguments will be supplied, do not correct this oversight yet.

3. Run the project. You should see an error message similar to:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 0

at com.example.ExceptionMain.main(ExceptionMain.java:7)

Java Result: 1

4. Surround the println line of code you added with a try-catch statement.

 The catch clause should:

 Accept a parameter of type ArrayIndexOutOfBoundsException

 Print the message: "No file specified, quitting!"

 Exit the application with an exit status of 1 by using the appropriate static method
within the System class

Note: Because the compiler did not force you to handle or declare the

ArrayIndexOutOfBoundsException, it is an unchecked exception. Typically, you

should not need to use a try-catch block to deal with an unchecked exception.

Checking the length of the args array is an alternate way to ensure that a

command-line argument was supplied.

5. Run the project. You should see an error message similar to:

No file specified, quitting!

Java Result: 1

6. Add a command-line argument to the project.

a. Right-click the ExceptionPractice project and select Properties.

b. In the Project Properties dialog box, select the Run category.

c. In the Arguments field, enter a value of:
D:\labs\resources\DeclarationOfIndependence.txt

d. Click the OK button.

7. Run the project. You should see a message similar to:

Reading from

file:D:\labs\resources\DeclarationOfIndependence.txt

Warning: Running the project is not the same as running the file. The command-line

argument will only be passed to the main method if you run the project.

8. Add the following lines of code to the main method below your previously added lines:

BufferedReader b =

new BufferedReader(new FileReader(args[0]));

String s = null;

while((s = b.readLine()) != null) {

System.out.println(s);

}

9. Run the Fix Imports wizard by right-clicking in the source-code window.

10. You should now see compiler errors in some of the lines that you just added. These lines

potentially generate checked exceptions. By manually building the project or holding your
cursor above the line with errors, you should see a message similar to:

unreported exception FileNotFoundException; must be caught or

declared to be thrown

11. Modify the project properties to support the try-with-resources statement.

a. Right-click the ExceptionPractice project and select Properties.

b. In the Project Properties dialog box, select the Sources category.

c. In the Source/Binary Format drop-down list, select JDK 7.

d. Click the OK button.

12. Surround the file IO code provided in step 8 with a try-with-resources statement.

 The line that creates and initializes the BufferedReader should be an automatically

closed resource.

 Add a catch clause for a FileNotFoundException. Within the catch clause:

 Print "File not found:" + args[0]

 Exit the application.

 Add a catch clause for an IOException. Within the catch clause:

 Print " Error reading file:" along with the message available in the

IOException object

 Exit the application.

13. Run the project. You should see the content of the

D:\labs\resources\DeclarationOfIndependence.txt file displayed in the output
window.

Practice 8-1: Detailed Level: Catching Exceptions

Overview

In this practice, you will create a new project and catch checked and unchecked exceptions.

Assumptions

You have reviewed the exception handling section of this lesson.

Summary

You will create a project that reads from a file. The file-reading code will be provided to you.
Your task is to add the appropriate exception-handling code.

Tasks

1. Create a new ExceptionPractice project as the main project.

a. Select File > New Project.

b. Select Java under Categories and Java Application under Projects. Click the Next
button.

c. Enter the following information in the “Name and Location” dialog box:

 Project Name: ExceptionPractice

 Project Location: D:\labs\08\practices. (or you other directory)

 (checked) Create Main Class: com.example.ExceptionMain

 (checked) Set as Main Project

d. Click the Finish button.

2. Add the following line to the main method.

System.out.println("Reading from file:" + args[0]);

Note: A command-line argument will be used to specify the file that will be read. Currently

no arguments will be supplied; do not correct this oversight yet.

3. Run the project. You should see an error message similar to:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 0

at com.example.ExceptionMain.main(ExceptionMain.java:7)

Java Result: 1

4. Surround the println line of code you added with a try-catch statement.

 The catch clause should:

 Accept a parameter of type ArrayIndexOutOfBoundsException

 Print the message: "No file specified, quitting!"

 Exit the application with an exit status of 1 by using the System.exit(1) method

try {

System.out.println("Reading from file:" + args[0]);

} catch (ArrayIndexOutOfBoundsException e) {

System.out.println("No file specified, quitting!");

System.exit(1);

}

Note: Since the compiler did not force you to handle or declare the

ArrayIndexOutOfBoundsException it is an unchecked exception. Typically you

should not need to use a try-catch block to deal with an unchecked exception.

Checking the length of the args array is an alternate way to ensure that a command
line argument was supplied.

5. Run the project. You should see an error message similar to:

No file specified, quitting!

Java Result: 1

6. Add a command-line argument to the project.

a. Right-click the ExceptionPractice project and click Properties.

b. In the Project Properties dialog box, select the Run category.

c. In the Arguments field, enter a value of:
D:\labs\resources\DeclarationOfIndependence.txt

d. Click the OK button.

7. Run the project. You should see a message similar to:

Reading from

file:D:\labs\resources\DeclarationOfIndependence.txt

Warning: Running the project is not the same as running the file. The command-line

argument will only be passed to the main method if you run the project.

8. Add the following lines of code to the main method below your previously added lines:

BufferedReader b =

new BufferedReader(new FileReader(args[0]));

String s = null;

while((s = b.readLine()) != null) {

System.out.println(s);

}

9. Run the Fix Imports wizard by right-clicking in the source-code window.

10. You should now see compiler errors in some of the lines that you just added. These lines

potentially generate checked exceptions. By manually building the project or holding your
cursor above the line with errors, you should see a message similar to:

unreported exception FileNotFoundException; must be caught or

declared to be thrown

11. Modify the project properties to support the try-with-resources statement.

a. Right-click the ExceptionPractice project and select Properties.

b. In the Project Properties dialog box, select the Sources category.

c. In the Source/Binary Format drop-down list, select JDK 7.

d. Click the OK button.

12. Surround the file IO code provided in step 8 with a try-with-resources statement.

 The line that creates and initializes the BufferedReader should be an automatically

closed resource.

 Add a catch clause for a FileNotFoundException. Within the catch clause:

 Print "File not found:" + args[0]

 Exit the application.

 Add a catch clause for an IOException. Within the catch clause:

 Print " Error reading file:" along with the message available in the

IOException object

 Exit the application.

try (BufferedReader b =

new BufferedReader(new FileReader(args[0]));) {

String s = null;

while((s = b.readLine()) != null) {

System.out.println(s);

}

} catch(FileNotFoundException e) {

System.out.println("File not found:" + args[0]);

System.exit(1);

} catch(IOException e) {

System.out.println("Error reading file:" + e.getMessage());

System.exit(1);

}

13. Run the project. You should see the content of the
D:\labs\resources\DeclarationOfIndependence.txt file displayed in the output
window.

Practice 8-2: Summary Level: Extending Exception

Overview

In this practice, you will take an existing application and refactor the code to make use of a
custom exception class and a custom auto-closeable resource.

Assumptions

You have reviewed the exception handling section of this lesson.

Summary

You have been given a project that implements the logic for a human resources application. The
application allows for creating, retrieving, updating, deleting, and listing of Employee objects.
This is the same project that you completed in the “Applying the DAO Pattern” practice.

Currently the only exceptions generated by the DAO implementation
(EmployeeDAOMemoryImpl) are unchecked exceptions such as

ArrayIndexOutOfBoundsException.

Future DAO implementations should not require any rewriting of the application logic

(EmployeeTestInteractive). However, some DAO implementations will generate checked

exceptions that must be dealt with. By creating a custom checked exception class that will be
used to wrap any DAO generated exceptions, all DAO implementations can appear to generate
the same type of exception. This will completely eliminate the need to change any application
logic when you create database enabled DAO implementations in later practices.

Tasks

1. Open the DAOException project as the main project.

a. Select File > Open Project.

b. Browse to D:\labs\08\practices. (or you other directory)

c. Select DAOException and select the "Open as Main Project" check box.

d. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see a menu. Test all the menu choices.

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

4. Create a DAOException class in the com.example.dao package.

5. Complete the DAOException class. The DAOException class should:

 Extend the Exception class

 Contain four constructors with parameters matching those of the four public constructors

present in the Exception class. For each constructor, use super() to invoke the

parent class constructor with matching parameters.

6. Modify the EmployeeDAO interface.

 All methods should declare that a DAOException may be thrown during execution.

 Extend the AutoCloseable interface.

7. Modify the add method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use an if statement to validate that an existing employee will not be overwritten by the
add. If one would, generate a DAOException and deliver it to the caller of the method.

The DAOException should contain a message String indicating what went wrong and

why.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

Note: Checking the length of the employeeArray could be used to determine whether the

DAOException should be thrown. However, the use of a try-catch block will be typical
of the structure used when creating a database-enabled DAO.

8. Modify the update method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use an if statement to validate that an existing employee is being updated. If one would

not be, generate a DAOException and deliver it to the caller of the method. The

DAOException should contain a message String indicating what went wrong and why.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

9. Modify the delete method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use an if statement to validate that an existing employee is being deleted. If one would
not be, generate a DAOException and deliver it to the caller of the method. The

DAOException should contain a message String indicating what went wrong and why.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

10. Modify the findById method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

11. Add a close method within the EmployeeDAOMemoryImpl class to implement the

AutoCloseable interface.

@Override

public void close() {

System.out.println("No database connection to close just

yet");

}

Note: The EmployeeDAOMemoryImpl class implements EmployeeDAO which extends

AutoCloseable and, therefore, EmployeeDAOMemoryImpl class must provide a close

method.

12. Modify the EmployeeTestInteractive class to handle the DAOException objects that
are thrown by the EmployeeDAO.

a. Import the com.example.dao.DAOException class.

b. Modify the executeMenu method to declare that it throws an additional exception of

type DAOException.

c. Remove the throws statement from the main method.

public static void main(String[] args) throws Exception

d. Modify the main method to use a try-with-resources statement.

 Surround the do-while loop with a try block.

 Convert the EmployeeDAO and BufferedReader references into auto-closed

resources.

 Add a catch clause for an IOException to the end of the try block to handle both

I/O errors thrown from the executeMenu method and when auto-closing the

BufferedReader.

catch (IOException e) {

System.out.println("Error " + e.getClass().getName() +

" , quitting.");

System.out.println("Message: " + e.getMessage());

}

 Add a second catch clause for an Exception to the end of the try block to handle

errors when auto-closing the EmployeeDAO.

catch (Exception e) {

System.out.println("Error closing resource " +

e.getClass().getName());

System.out.println("Message: " + e.getMessage());

}

Note: At this point the application will compile and run, but DAOException instances

generated will cause the application to terminate. For example, if you create an

employee with an ID of 100, the application will break out of the do-while loop and

pass to this catch clause.

e. Add a nested try-catch block in the main method that handles exceptions of type

DAOException that may be thrown by the executeMenu method.

try {

timeToQuit = executeMenu(in, dao);

} catch (DAOException e) {

System.out.println("Error " + e.getClass().getName());

System.out.println("Message: " + e.getMessage());

}

13. Run the project. You should see a menu. Test all the menu choices.

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

Attempt to delete an employee that does not exist. You should see a message similar to:

Error com.example.dao.DAOException

Message: Error deleting employee in DAO, no such employee 1

Practice 8-2: Detailed Level: Extending Exception

Overview

In this practice, you will take an existing application and refactor the code to make use of a
custom exception class and a custom auto-closeable resource.

Assumptions

You have reviewed the exception handling section of this lesson.

Summary

You have been given a project that implements the logic for a human resources application. The
application allows for creating, retrieving, updating, deleting, and listing of Employee objects.
This is the same project that you completed in the “Applying the DAO Pattern” practice.

Currently the only exceptions generated by the DAO implementation
(EmployeeDAOMemoryImpl) are unchecked exceptions such as

ArrayIndexOutOfBoundsException.

Future DAO implementations should not require any rewriting of the application logic

(EmployeeTestInteractive). However, some DAO implementations will generate checked

exceptions that must be dealt with. By creating a custom-checked exception class that will be
used to wrap any DAO generated exceptions, all DAO implementations can appear to generate
the same type of exception. This will completely eliminate the need to change any application
logic when you create database enabled DAO implementations in later practices.

Tasks

1. Open the DAOException project as the main project.

a. Select File > Open Project.

b. Browse to D:\labs\08 \practices. (or you other directory)

c. Select DAOException and select the "Open as Main Project" check box.

d. Click the Open Project button.

2. Expand the project directories.

3. Run the project. You should see a menu. Test all the menu choices.

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

4. Create a DAOException class in the com.example.dao package.

5. Complete the DAOException class. The DAOException class should:

 Extend the Exception class.

 Contain four constructors with parameters matching those of the four public constructors

present in the Exception class. For each constructor, use super() to invoke the

parent class constructor with matching parameters.

public class DAOException extends Exception {

public DAOException() {

super();

}

public DAOException(String message) {

super(message);

}

public DAOException(Throwable cause) {

super(cause);

}

public DAOException(String message, Throwable cause) {

super(message, cause);

}

}

6. Modify all the methods in the EmployeeDAO interface.

 All methods should declare that a DAOException may be thrown during execution.

 Extend the AutoCloseable interface.

public interface EmployeeDAO extends AutoCloseable {

public void add(Employee emp) throws DAOException;

public void update(Employee emp) throws DAOException;

public void delete(int id) throws DAOException;

public Employee findById(int id) throws DAOException;

public Employee[] getAllEmployees() throws DAOException;

}

7. Modify the add method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use an if statement to validate that an existing employee will not be overwritten by the
add. If one would, generate a DAOException and deliver it to the caller of the method.

The DAOException should contain a message String indicating what went wrong and

why.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

public void add(Employee emp) throws DAOException {

if(employeeArray[emp.getId()] != null) {

throw new DAOException("Error adding employee in DAO,

employee id already exists " + emp.getId());

}

try {

employeeArray[emp.getId()] = emp;

} catch (ArrayIndexOutOfBoundsException e) {

throw new DAOException("Error adding employee in DAO, id

must be less than " + employeeArray.length);

}

}

Note: Checking the length of the employeeArray could be used to determine whether the

DAOException should be thrown however the use of a try-catch block will be typical of
the structure used when create a database enabled DAO.

8. Modify the update method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use an if statement to validate that an existing employee is being updated. If one would

not be, generate a DAOException and deliver it to the caller of the method. The

DAOException should contain a message String indicating what went wrong and why.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

public void update(Employee emp) throws DAOException {

if(employeeArray[emp.getId()] == null) {

throw new DAOException("Error updating employee in DAO,

no such employee " + emp.getId());

}

try {

employeeArray[emp.getId()] = emp;

} catch (ArrayIndexOutOfBoundsException e) {

throw new DAOException("Error updating employee in DAO,

id must be less than " + employeeArray.length);

}

}

9. Modify the delete method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use an if statement to validate that an existing employee is being deleted. If one would

not be, generate a DAOException and deliver it to the caller of the method. The
DAOException should contain a message String indicating what went wrong and why.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

public void delete(int id) throws DAOException {

if(employeeArray[id] == null) {

throw new DAOException("Error deleting employee in DAO,

no such employee " + id);

}

try {

employeeArray[id] = null;

} catch (ArrayIndexOutOfBoundsException e) {

throw new DAOException("Error deleting employee in DAO,

id must be less than " + employeeArray.length);

}

}

10. Modify the findById method within the EmployeeDAOMemoryImpl class to:

 Declare that a DAOException may be produced during execution of this method.

 Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

 Within the catch block that you just created, generate a DAOException and deliver it to

the caller of the method. The DAOException should contain a message String
indicating what went wrong and why.

public Employee findById(int id) throws DAOException {

try {

return employeeArray[id];

} catch (ArrayIndexOutOfBoundsException e) {

throw new DAOException("Error finding employee in DAO",

e);

}

}

11. Add a close method within the EmployeeDAOMemoryImpl class to implement the

AutoCloseable interface.

@Override

public void close() {

System.out.println("No database connection to close just

yet");

}

Note: The EmployeeDAOMemoryImpl class implements EmployeeDAO which extends

AutoCloseable and, therefore, EmployeeDAOMemoryImpl class must provide a close

method.

12. Modify the EmployeeTestInteractive class to handle the DAOException objects that
are thrown by the EmployeeDAO.

a. Import the com.example.dao.DAOException class.

import com.example.dao.DAOException;

b. Modify the executeMenu method to declare that it throws an additional exception of

type DAOException.

public static boolean executeMenu(BufferedReader in, EmployeeDAO

dao) throws IOException, DAOException {

c. Remove the throws statement from the main method.

public static void main(String[] args) throws Exception

d. Modify the main method to use a try-with-resources statement.

 Surround the do-while loop with a try block.

 Convert the EmployeeDAO and BufferedReader references into auto-closed

resources.

 Add a catch clause for an IOException to the end of the try block to handle both

I/O errors thrown from the executeMenu method and when auto-closing the

BufferedReader.

 Add a second catch clause for an Exception to the end of the try block to handle

errors when auto-closing the EmployeeDAO.

try (EmployeeDAO dao = factory.createEmployeeDAO();

BufferedReader in =

new BufferedReader(new InputStreamReader(System.in))) {

do {

timeToQuit = executeMenu(in, dao);

} while (!timeToQuit);

} catch (IOException e) {

System.out.println("Error " + e.getClass().getName() +

" , quitting.");

System.out.println("Message: " + e.getMessage());

} catch (Exception e) {

System.out.println("Error closing resource " +

e.getClass().getName());

System.out.println("Message: " + e.getMessage());

}

Note: At this point, the application will compile and run, but DAOException instances

generated will cause the application to terminate. For example, if you create an

employee with an ID of 100, the application will break out of the do-while loop and

pass to this catch clause.

e. Add a nested try-catch block in the main method that handles exceptions of type

DAOException that may be thrown by the executeMenu method.

try {

timeToQuit = executeMenu(in, dao);

} catch (DAOException e) {

System.out.println("Error " + e.getClass().getName());

System.out.println("Message: " + e.getMessage());

}

13. Run the project. You should see a menu. Test all the menu choices.

[C]reate | [R]ead | [U]pdate | [D]elete | [L]ist | [Q]uit:

Attempt to delete an employee that does not exist. You should see a message similar to:

Error com.example.dao.DAOException

Message: Error deleting employee in DAO, no such employee 1

