

Practices for Lesson 12

Practices Overview

In these practices, you experiment with handling checked exceptions. In the first practice, you
handle an exception thrown by one of the Java foundation classes. In the second practice, you
catch and throw a custom exception class.

Practice 12-1: Using a try/catch Block to Handle an Exception

Overview

In this practice, you use the Java API documentation to examine the SimpleDateFormat class

and find the exception thrown by its parse method. Then you create a class that calls the

parse method, using a try/catch block to handle the exception.

Assumptions

This practice assumes that the following file appears in the practice folder for this lesson,
Lesson12:

 DateTest.java

Tasks

1. In NetBeans, create a new project from existing sources called Practice13. Set the Source

Package Folder to point to Lesson12. Remember to set the Binary Source Format

property of the project. If you need additional details, refer to Practice 1-2, Steps 3 and 4.

There are many files in this project. Only the DateTest class is relevant for this practice.

2. Open the Java API Specification documentation by using the shortcut on the desktop.

3. Find the SimpleDateFormat class in the java.text package. This class allows you to pick

a standard date format that will then be applied during both formatting and parsing. For
instance, you format the String output of a Date object, and you parse (or create) a Date
object based on a formatted String representation of the date.

4. The steps below will guide your examination of the SimpleDateFormat documentation.

a. Find and click the parse method. As you can see, this method has two arguments. In

this practice, you invoke a simpler parse method that belongs to the superclass,

DateFormat, instead of this parse method you see here. The superclass method is not

private and is therefore, available to a SimpleDateFormat object.

b. In the Specified by section, click the parse link as shown below to go to the

DateFormat documentation for this method.

c. The javadocs now display a similar two-argument parse method in the DateFormat

class. Scroll up to the one-argument parse method directly above this one.

d. Notice that this parse method accepts a single String argument and returns a Date
object. What, if any, exceptions does it throw?

e. Is the ParseException a checked exception (one that must be caught or thrown)? Click
the ParseException link to see its class hierarchy. Is it a subclass of Exception? If so, it
is a checked exception and must be handled in the program.

f. Click the browser’s Back button twice to return to the SimpleDateFormat
documentation.

g. Find the format method. This format method accepts three arguments. Once again,

there is a simpler version of this method defined in the DateFormat class that you use

in this practice. Click the format link under the Specified by heading to view the

DateFormat documentation for this method.

h. Scroll down to find the one-argument format method. Notice that it accepts a single

Date object argument and returns a String value. Does this format method throw

any exceptions? (Answer: It does not.)

5. In NetBeans, create a new Java Class called “DateManipulator”. Provide field declarations
as indicated in the table below. More detailed instructions follow the table.

Step Code Description Choices or Values

a. Declare a field of type Date Name: myDate

b. Declare and instantiate a field of type

SimpleDateFormat specifying its

default format in the constructor.

Name: simpleDF

Default format: “MM/dd/yyyy”

c. Add the necessary import statements java.util.Date

java.text.SimpleDateFormat

a. Declare a field of type Date, using the variable name myDate.

b. Declare a field of type SimpleDateFormat called simpleDF. Use the new operator

to instantiate (create an object) the SimpleDateFormat field in the same line as the
declaration. Specify the default format for this object by passing the format String to the
object constructor as shown below.

SimpleDateFormat simpleDF =new SimpleDateFormat(“MM/dd/yyyy”);

c. Click the error icons that appear next to each of these lines of code. Select the option

to add the required import statements. There are two possible Date objects that can

be imported. Choose the java.util.Date.

6. Add a public method called parseDate that accepts a String argument called

dateString and returns void.

Note: This method creates a Date object instance by invoking the parse method. It

formats the Date object according to the default format of the SimpleDateFormat object and
displays the resulting string. It also displays the native date format of the Date object for

comparison. In addition to this, the method handles the ParseException using a try /

catch block.

7. Follow the high-level steps in the table below to code the parseDate method. More

detailed steps are provided following the table.

Step Code Description Choices or Values

a. Declare a local String variable. Name: formattedDateString

b. Invoke the parse method of the

SimpleDateFormat object.

Ignore the error sign for now.

Pass the dateString as the String
argument.

Assign the return value to the myDate field.

c. Display a message indicating that

the parse method was successful

Step Code Description Choices or Values

d. Display the natively formatted date
object

Print the Date object, itself, with a suitable
label.

e. Invoke the format method of the

SimpleDateFormat object, passing

myDate as the method argument.

Assign the return value to
formattedDateString

f. Display the formatted date String
with a suitable label

g. Enclose all of the above code in a

try block

try{

// lines of code here

}

h. Catch the ParseException and
display the exception object

catch (ParseException ex) {

// display the ex object here

}

i. Add the missing import statement java.text.ParseException

a. Declare a local String variable called formattedDateString. This will be used to

hold the String representation of the formatted Date object.

b. Invoke the parse method of the simpleDF object, passing the method’s dateString

argument to the parse method. This method returns a Date object so assign the return

value to myDate. You will, no doubt, notice an error icon in the left margin for this line

of code. Put your cursor over it to see the warning message. You will add a try/catch
block later to this fix this.

c. Use System.out.println to print the message “Parse successful”.

d. Again use System.out.println to print myDate along with the message “Date with

native format: “. (Hint: the Java Virtual Machine will invoke the toString method of

the Date object.)

e. Invoke the format method of the simpleDF object. Pass myDate as the argument to

the method. Assign the return value to formattedDateString.

formattedDateString = simpleDF.format(myDate);

f. Display formattedDateString with a suitable label. Suggestion “Formatted date: “

+ formattedDateString

g. Now you fix the error regarding the missing try/catch block. Surround all of the

above lines of code in a try block.

 Hint: Right-click anywhere in the editor and select Format to correct the indentation

of your code.

h. On the next line after the closing brace of the try block, add a catch block that

catches the ParseException and displays the exception object to the screen.

i. Right-click the error icon in the left margin and allow NetBeans to provide the missing
import statement (java.text.ParseException).

Solution:

public void parseDate(String myDate){

try{

String formattedDateString;

myDate = simpleDF.parse(dateString);

System.out.println("Parse successful");

System.out.println("Date with native format: "

+ myDate);

formattedDateString = simpleDF.format(myDate);

System.out.println("Formatted date: "

+ formattedDateString);

}catch (ParseException ex) {

System.out.println(ex);

}

}

8. Save and compile your program.

9. Open the DateTest class and examine it. Substitute your own date between the quotation

marks in the parseDate method call. Use the format, “MM/dd/yyyy”, as specified in the

comment.

10. Click Save to compile.

11. Run the DateTest and check the output. If your date was formatted correctly, the
ParseException will not appear in the output. You should, however, see the difference
between the native Date formatting and the effect of the SimpleDateFormat class on the
formatting of that same date.

12. Now change the argument value of the parseDate method in DateTest so it reverts to

being an empty string (“”). Save and compile the program.

13. Run the DateTest class again. The ParseException will be thrown this time and you should
see the message from the exception object in the output.

Note: You will notice that the “Parse successful” message does not appear. That particular

display occurred in the line immediately following the parse method call. When the parse

method threw the exception, the program went immediately to the catch block and the

remaining lines of code in the try block were not executed.

Practice 12-2: Catching and Throwing a Custom Exception

Overview

In this practice, you use a custom exception called “InvalidSkillException”. You use this with the
Employee Tracking application that you designed and built in Practices 12-1 and 12-2. You
throw the InvalidSkillException in one method and catch it in the calling method.

A new set of Java source files for the Employee hierarchy are provided for your use in this
practice.

Assumptions

This practice assumes that the following files appear in the practice folder for this lesson and,
consequently, in the Practice13 project:

 Editor.java

 Employee.java

 EmployeeTest.java

 GraphicIllustrator.java

 InvalidSkillException.java

 Manager.java

 Printable.java

 Printer.java

 SkilledEmployee.java

 TechnicalWriter.java

Tasks

Assume that there is a list of valid skill types that can be associated with a particular job role in

the Employee Tracking system. In the setSkill method (belonging to the SkilledEmployee

class), some validation is necessary to determine whether the skill argument passed into the
method is valid for the employee’s job title. If the skill is not valid, the method will throw an
InvalidSkillException. The calling method in the EmployeeTest class must then catch this
exception.

Note: In our simple example, the validation in the setSkill method will be greatly

simplified and does not represent the robust, thorough type of validation that would occur in
a “real world” application. Our purpose here is to focus on catching and throwing
exceptions.

1. Open the InvalidSkillException class and examine the code. It is very simple. The only thing
that makes this function an exception is that it extends Exception. You see a public no-args
constructor and also a public constructor that accepts a String argument. That argument is
the message that will be displayed when this Exception object is printed.

2. Open the SkilledEmployee class and modify the setSkill method as described in the

steps below. The solution for the setSkill method is shown following the steps if you

need further assistance.

a. Add a throws clause to the method declaration so that it throws an

InvalidSkillException.

b. As the first line of code in the method, declare a boolean variable called “valid” and

initialize it to true

c. Use an if/else construct to set the value of the valid variable to false if the

skill argument is null or has a length of less than 5. Otherwise, set valid = true.

d. Use another if/else construct to test the value of the valid variable.

 If it is true, add the skill to the skillList.

 If it is false, throw a new InvalidSkillException, using the constructor that

takes a String argument for the exception message.

 The message should show the skill argument that caused the exception and

concatenate that to a string literal that indicates that this is an invalid value for an
employee with this particular job. Also display the employee’s job title, using

this.getJobTitle().

Solution:

public void setSkill(String skill) throws

InvalidSkillException {

Boolean valid = true;

if(skill == null | skill.length() < 5){

valid = false;

}

else {

valid = true;

}

if (!valid) {

throw new InvalidSkillException(skill +

“ is not valid for the “ +

this.getJobTitle() + “ job.”);

}

else {

skillList.add(skill);

}

}

3. Save and compile your program

4. Open the EmployeeTest class. You should now see red error icons in the left margin for

every line of code that calls the setSkill method. Click one of the error icons to read the

error description and see the options it offers to help you solve the problem.

When you compiled the SkilledEmployee class, you made NetBeans aware of the fact that

the setSkill method throws an InvalidSkillException. The compiler is checking this

(remember, this is a “checked exception”) and expects you to either catch it or re-throw it

whenever you invoke setSkill. None of the suggested options will work well in this

particular situation, so you add the try/catch block yourself.

5. Surround each set of setSkill method invocations with a try/catch block. In the

catch block, display the exception object. You will have to add try/catch blocks for

myEditor, myGI, and myTW.

Example: The two invocations for the myEditor object can all go within a single block.

try{

myEditor.setSkill(“typing”);

myEditor.setSkill(“technical editing”);

}

catch(InvalidSkillException ex){

System.out.println(ex);

}

6. Change the String argument in one of the setSkill calls to a shortened String (less than

5 characters) so that it will be deemed invalid and the exception will be thrown.

7. Save and compile your program. Run the EmployeeTest class and examine the output.

Note: The catching of an InvalidSkillException did not prevent the remainder of the method
from executing. It prevented only the saving of an invalid skill for this employee. Handling
checked exceptions in this way also offers an opportunity to write the error information to a
log file or to prompt the user to enter the skill again (assuming a different user interface
than we are using here).

