

Practices for Lesson 11

Practices Overview

In these practices, you design and create a class hierarchy for the Employee Tracking System
of the Marketing department of Duke’s Choice Company. You also create an interface and
implement it in the classes you created.

Practice 11-1: Creating and Using Superclasses and Subclasses

Overview

In this practice, you design and then create a class hierarchy that forms the basis for an
Employee Tracking System in the Marketing department in the Duke’s Choice company. This
practice comprises two sections. In the first section, you create a simple design model for the
class hierarchy. In the second section, you create the actual classes and test them.

Assumptions

This practice assumes that the following file appears in the practice folder for this lesson,
Lesson11:

 EmployeeTest.java

Design the Class Hierarchy

In this section, you design subclasses and superclasses using the information in the following
paragraphs.

The Marketing department of the Duke’s Choice company has employees in several different
positions. Some of these positions are: Technical Writers, Graphic Illustrators, Managers, and
Editors.

Marketing wants you to create a program for tracking information about each of its workers. This
information consists of: the worker’s name, job title, employee ID, and level (1, 2, or 3).
Additionally:

 Managers must have a list of employees that they manage.

 Technical Writers, Graphic Illustrators, and Editors must have a list of skills that they
possess.

 Editors must have a value indicating whether they prefer to do electronic editing or
paper-based editing.

 There must be a means by which to display all the information for a given employee
type.

1. Create a class hierarchy of superclass and subclass relationships for the employees of the
Marketing department. Draw the diagram on a piece of paper. Or, if you prefer, you may
use the UMLet tool on your desktop.

Hints

 Use the “is a” phrase: Ask yourself if all or many of the job types have some of the
same attributes (fields) and operations (methods). For instance, all of the different job
types mentioned above can also be called Employees (in the general sense). They
share certain fields and operations. Therefore, a Manager “is a(n)” Employee. An
Editor has an “is a(n)” Employee.

 Consider an interim superclass: If you find that certain employee types share

common fields and/or operations that are not shared by other employee types (for
instance a list of skills), yet they are all “Employees”, consider creating a common
superclass for these employees: inherited from the top level superclass: Employee.

 Displaying information: Remember that many of the fields that would be displayed
are shared in common by all these employees (for instance: name, job title,
employeeID). You might be able to display this common information from the top level
superclass. In the subclass, simply “add to” what was displayed by the superclass,
showing the fields that are unique to this particular employee type.

 Note: This is done by overriding the method from the superclass and calling the
overridden method from within the subclass method, which then adds more code to
display additional fields.

 Encapsulation: Demonstrate encapsulation for each of the classes in your design by

including get and set methods for each private field, according to the type of access

required.

 Modeling: Model the class hierarchy using class diagrams similar to those you saw in

this lesson.

Solution:

Create the Classes

2. In NetBeans, create a new project from existing sources called Practice12. Set the Source

Package Folder to point to D:\labs\les12. Remember to set the Binary Source Format

property of the project. If you need further details, refer to Practice 2-2, Steps 3 and 4.

3. Before you begin creating the classes, change a property of the NetBeans IDE. The Add
@Override Annotation property of the editor is useful when you are creating javadocs for

your application. This property is applied when you override a method in the superclass.
Since we are not creating javadocs in this course, you turn off this property as it is merely
distracting for our purposes. Follow the steps below to make this change:

a. Select Tools > Options from the main menu.

b. In the Options window, click the Editor toolbar button and then click the Hints tab.

c. Change the Language to Java. The hints in the left column change accordingly.

d. Expand the JDK 1.5 and later node. Beneath this node, deselect Add @Override
Annotation.

e. Click OK to save the change and close the Options window.

4. Create the Employee class shown in the diagram above. The following steps provide more
details.

a. All of the fields shown in the diagram should be private. Be sure to follow the same
naming pattern that you have been using (camelCase).

b. Use the Refactor feature of NetBeans to encapsulate these fields (create get methods

for each field and set methods for each field). Change the access modifier for the

setEmployeeID method to private.

 Note: Employee IDs are calculated to ensure uniqueness, and you must restrict

public write access to this field so that the IDs are always unique. ID values are only

set by the calculateEmployeeID method.

c. Add another field, not shown in the diagram, called employeeIDCounter. Make it a

protected static int field and initialize it to 0 (zero).

Note

A static field is a “class” field. There is only one value for this field that is shared by all

instances of this class. The static field is used here to store an integer value that is

incremented from within the calculateEmployeeID method to generate the next ID

value. The employeeIDCounter is accessed and incremented by all instances of the

Employee and its subclasses, thus ensuring that no duplicate employee IDs are

generated.

In a real business application, this technique would not be robust enough to guarantee
unique IDs. Instead, a database would probably generate the IDs. However, this technique
suffices for our simple application.

d. Create the calculateEmployeeID method. It takes no arguments and does not

return a value. In the body of this method, increment the employeeIDCounter and

then set the new value in the employeeID field (use the set method of the field).

e. Create the displayInformation method. It takes no arguments and does not return

a value. In this method, print out the value of each field of the class with a suitable
label.

Solution:

public class Employee {

protected static int employeeIDCounter = 0;

private int employeeID;

private String name;

private String jobTitle;

private int level;

public void calculateEmployeeID() {

employeeIDCounter++; // inc so employeeID is unique

setEmployeeID(employeeIDCounter);

}

public void displayInformation() {

System.out.println("Name: " + getName());

System.out.println("Job Title:" + getJobTitle());

System.out.println("Employee ID: " +

getEmployeeID());

System.out.println("Level: " + getLevel());

}

// The set and get methods are not shown here

}

f. Click Save to compile the class.

5. Create the Manager class from the diagram. The steps below provide more details.

a. After creating the new Java Class file, add the following phrase (shown in bold below)
to the class declaration to indicate that it is a subclass of Employee:

public class Manager extends Employee {

b. Declare and instantiate the employeeList field as a private ArrayList (instead of the

array of type Employee that is indicated in the diagram). This is simpler to work with

than an array.

private ArrayList employeeList = new ArrayList();

c. Add the necessary import statement to import the java.util.ArrayList class.

Hint: Click on the error icon in the left margin and let NetBeans add the import statement

for you.

d. Add a public setEmployee method to add a single employee to the employeeList.

The method takes an argument of type Employee. Use the add method of the

ArrayList to add the Employee object to the employeeList object.

public void setEmployee(Employee emp){

employeeList.add(emp);

}

Question: What validation might you need to do in this method in a real-world application?

e. Add a public getEmployees method that simply returns the employeeList.

public ArrayList getEmployees(){

return employeeList;

}

f. Add a displayInformation method to override the method in the Employee class.

In this method, you invoke the displayInformation method in the superclass and

then display additional information specific to the Manager class.

i. Declare the method with the exact same signature as in the superclass method
(returning void and accepting no arguments). NetBeans displays a green circle
icon in the margin as you have finished typing the method declaration. This
indicates that this method overrides the superclass method. Clicking the green
circle opens the Employee class in the editor to show you the ancestor method.
This can be helpful sometimes.

ii. In the method block, invoke the superclass method using the super keyword

as a reference to the Employee class.

iii. Display the following message: “Manager has the following employees: “

iv. Now iterate through the employeeList using an enhanced for loop.

Remember that the employeeList is an ArrayList that holds Objects.

The compiler does not know that these Objects happen to be Employee

objects. Therefore, to get the name field from each object to display it, you have

to cast the Object to an Employee (an Employee “is a(n)” Object). Declare a

local variable at the top of this method of type Employee. This holds the cast

value. The code for this method is provided for you here:

public void displayInformation(){

Employee emp;

// Invoke the ancestor method

super.displayInformation();

System.out.println

(“The manager has the following employees: “);

for(Object obj : employeeList){

// Cast the object as an Employee

emp = (Employee)obj;

// print the name, indented by a tab

System.out.println(“\t“ + emp.getName());

}

}

g. Save and compile your program.

6. Create the SkilledEmployee class from the diagram. This class should also extend
Employee.

a. Use an ArrayList instead of a String array when you declare the skillList field.

Instantiate the field to an empty ArrayList.

private ArrayList skillList = new ArrayList();

b. Add the necessary import statement to import for the ArrayList class.

c. Add a public setSkill method to add a single skill to the skillList. The method

takes an argument of type String. Use the add method of the ArrayList to add the

String to the skillList object.

d. Add a public getSkills method that returns the skillList.

e. Override the displayInformation method as you did in the Manager class. After

invoking the superclass method, display the following message: “Employee has the

following skills: “. Iterate through the skillList using an enhanced for loop,

displaying each skill, indented by a tab as you did in the Manager class.

 Note: The skillList object contains String objects. In this case, you can

directly print the Object reference from the ArrayList without casting it to a

String. The reason for this is that every Object has a toString method and the

println method invokes this for you, resulting in the display of the String value

(i.e. the skill).

f. Click Save to compile the program.

 Note: Consult the solution file for the SkilledEmployee class if you need help.

7. Create the Editor class as a subclass of SkilledEmployee.

a. Declare the prefersPaperEditing field as a private boolean. (It is initialized to

a default value of false.)

b. Add a setPrefersPaperEditing method that takes a boolean argument and

returns void. Assign the argument to the private field.

c. Add a getEditingPreference method that returns a String value. Use an

if/else construct to check the value of prefersPaperEditing and set the return

value to either “Paper” or “Electronic”.

d. Override the displayInformation method as you did in the Manager class,

invoking the superclass method first and then displaying the return value of

this.getEditingPreference() with a suitable label.

e. Click Save to compile the program.

 Note: Consult the solution file for the Editor class if you need help.

8. Create the remaining two classes from the diagram: GraphicIllustrator and TechnicalWriter.
Both of these classes extend the SkilledEmployee class. It is not necessary to add any

additional fields or methods, nor is it necessary to override the displayInformation

method.

9. Save and compile the program.

10. Open the EmployeeTest class in the editor and examine the code.

Note

If there are any error indicators, check to make sure that you have spelled all of your
method names the same way they are spelled in this class. If there are still error indicators
after making any changes, try clicking the Save button again and/or try just clicking on a
line in EmployeeTest that indicates an error. This reminds the syntax checker in NetBeans
to try resolving the references once more.

11. Run the EmployeeTest class to test your program. You should see an output similar to the
following screenshot:

Practice 11-2: Using a Java Interface

Overview

In this practice, you create an interface called Printable and implement it within the class
hierarchy that you built in Practice 12-1. You also examine and run another small application
that uses the same Printable interface to better understand the benefits of using interfaces.

Assumptions

This practice assumes that the following files appear in the practice folder for this lesson,
Lesson11:

 Printer.java

 Country.java

 Region.java

 Company.java

 CompanyTest.java

Tasks

1. Create a new Java Interface using the NetBeans File wizard.

a. Right click Practice12 in the Projects window.

b. Select New > Java Interface from the popup menu.

c. Enter Printable in the Class Name field as shown below.

d. Click Finish.

2. In the Printable interface, declare a public abstract method called print. It should

return void and accept zero arguments.

public abstract void print();

3. Click Save.

4. Implement the Printable interface in the Employee class.

Note: Remember that all of the other classes in this hierarchy are subclasses of Employee,

therefore, they also now implement Printable through inheritance.

public class Employee implements Printable {

5. The syntax checker now shows an error icon in the margin of this line. Move your cursor
over the error icon to see the potential compilation error that it recognizes.

Explanation: Any non-abstract classes that implement an interface must also implement all
of the abstract methods of the interface. In this case, the only abstract method in Printable

is print.

6. Change name of the displayInformation method to print.

7. Make this same change (displayInformation to print) in each of the following

classes to ensure that they also implement the print method. You also need to change

the name of the superclass method called in the first line of the new print method. (It is no

longer called displayInformation.)

 Manager

 SkilledEmployee

 Editor

8. Open the Printer class in the editor and examine its only method: printToScreen. Notice

that this method takes an argument of type Printable. Any class that implements

Printable would be accepted as an argument. This method invokes the print method of

the Printable object.

public void printToScreen(Printable p){

p.print();

}

9. In the main method of the EmployeeTest class, make the following changes:

 Declare and create an instance of the Printer class.

 For every invocation of the displayInformation method, comment out the line and

instead, invoke the printToScreen method of the Printer object. Pass in a

reference to the Printable object as shown below:

//myManager.displayInformation();

myPrinter.printToScreen(myManager);

10. Save and compile your program.

11. Run the EmployeeTest class and examine the output. It should be identical to the output
you saw before implementing the interface.

Discussion

One of the benefits of using interfaces is that you can abstract functionality that is used in
different applications and different class hierarchies. This functionality is moved into the
interface and can then be used anywhere that the functionality is required. For example, in this
practice, the ability to display class fields with labels and formatting has been moved into the
Printable interface.

Now you test the cross-application benefit by running a different application that also
implements Printable. The Company class hierarchy displays information about Duke’s Choice
top level management, as well as that of its regional and divisional management. The code is
very similar to what you saw in the Employee hierarchy.

12. Close all of the classes you have been working on and open the following classes in the
editor:

 Company

 Region

 Country

 CompanyTest

13. Examine the Company class first. This is the superclass of Region and Country. Notice that
it implements the same Printable interface that you used in the Employee hierarchy.

14. Examine the Region, Country and CompanyTest classes as well.

15. Run the CompanyTest class to view the output of this application.

16. Close the Practice12 project in NetBeans.

You have now had an introductory exposure to Java Interfaces, one of the most valuable tools
of the Java language. This topic is covered in much more detail in the Java SE7 Programming
class.

