

Practices for Lesson 6

Practices Overview

In these practices, use generics and collections to practice the concepts covered in the lecture.
For each practice, a NetBeans project is provided for you. Complete the project as indicated in

the instructions.

Practice 6-1: Summary Level: Counting Part Numbers by Using

HashMaps

Overview

In this practice, use the HashMap collection to count a list of part numbers.

Assumptions

You have reviewed the collections section of this lesson.

Summary

You have been asked to create a simple program to count a list of part numbers that are of an

arbitrary length. Given the following mapping of part numbers to descriptions, count the number
of each part. Produce a report that shows the count of each part sorted by the part’s product
description. The part-number-to-description mapping is as follows:

Part Number Description

1S01 Blue Polo Shirt

1S02 Black Polo Shirt

1H01 Red Ball Cap

1M02 Duke Mug

Once complete, your report should look like this:

=== Product Report ===

Name: Black Polo Shirt Count: 6

Name: Blue Polo Shirt Count: 7

Name: Duke Mug Count: 3

Name: Red Ball Cap Count: 5

Tasks

Open the Generics-Practice01 project and make the following changes.

1. For the ProductCounter class, add two private map fields. The first map counts part

numbers. The order of the keys does not matter. The second map stores the mapping of
product description to part number. The keys should be sorted alphabetically by description
for the second map.

2. Create a one argument constructor that accepts a Map as a parameter. The map that stores

the description-to-part-number mapping should be passed in here.

3. Create a processList() method to process a list of String part numbers. Use a HashMap
to store the current count based on the part number.

public void processList(String[] list){ }

4. Create a printReport() method to print out the results.

public void printReport(){ }

5. Add code to the main method to print out the results.

6. Run the ProductCounter.java class to ensure that your program produces the desired

output.

Practice 6-1: Detailed Level: Counting Part Numbers by Using

HashMaps

Overview

In this practice, use the HashMap collection to count a list of part numbers.

Assumptions

You have reviewed the collections section of this lesson.

Summary

You have been asked to create a simple program to count a list of part numbers that are of an

arbitrary length. Given the following mapping of part numbers to descriptions, count the number
of each part. Produce a report that shows the count of each part sorted by the part’s product
description. The part number to description mapping is as follows:

Part Number Description

1S01 Blue Polo Shirt

1S02 Black Polo Shirt

1H01 Red Ball Cap

1M02 Duke Mug

Once complete, your report should look like this:

=== Product Report ===

Name: Black Polo Shirt Count: 6

Name: Blue Polo Shirt Count: 7

Name: Duke Mug Count: 3

Name: Red Ball Cap Count: 5

Tasks

Open the Generics-Practice01 project and make the following changes.

1. For the ProductCounter class, add two private map fields. The first map counts part

numbers. The order of the keys does not matter. The second map stores the mapping of
product description to part number. The keys should be sorted alphabetically by description
for the second map.

private Map<String, Long> productCountMap = new HashMap<>();

private Map<String, String> productNames = new TreeMap<>();

2. Create a one argument constructor that accepts a Map as a parameter.

public ProductCounter(Map productNames){

this.productNames = productNames;

}

3. Create a processList() method to process a list of String part numbers. Use a

HashMap to store the current count based on the part number.

public void processList(String[] list){

long curVal = 0;

for(String itemNumber:list){

if (productCountMap.containsKey(itemNumber)){

curVal = productCountMap.get(itemNumber);

curVal++;

productCountMap.put(itemNumber, new

Long(curVal));

} else {

productCountMap.put(itemNumber,new Long(1));

}

}

}

4. Create a printReport() method to print out the results.

public void printReport(){

System.out.println("=== Product Report ===");

for (String key:productNames.keySet()){

System.out.print("Name: " + key);

System.out.println("\t\tCount: " +

productCountMap.get(productNames.get(key)));

}

}

5. Add the following code to the main method to print out the results.

ProductCounter pc1 = new ProductCounter (productNames);

pc1.processList(parts);

pc1.printReport();

6. Run the ProductCounter.java class to ensure that your program produces the desired

output.

Practice 6-2: Summary Level: Matching Parentheses by Using a

Deque

Overview

In this practice, you use the Deque object to match parentheses in a programming statement.

Assumptions

You have reviewed the collections section of this lesson.

Summary

Use the Deque data structure as a stack to match parentheses in a programming statement.

You will be given several sample lines containing logical statements. Test the lines to ensure
that the parentheses match, return true if they do, false if they do not.

For example, the output from the program might look like the following.

Line 0 is valid

Line 1 is invalid

Line 2 is invalid

Line 3 is valid

Tasks

Open the Generics-Practice02 project and make the following changes.

1. Modify the processLine() method in ParenMatcher.java to read a line in and convert

the string into a character array.

2. Loop through the array. Push “(“ onto the stack. When a “)” is encountered, pop a “(“ from

the stack. Two conditions should return false.

a. If you need to call a pop operation and the stack is empty, the number of parentheses

do not match, return false.

b. If after completing the loop a “(“ is left on the stack return false. The number of

parentheses does not match.

3. Run the ParanMatcher.java class to ensure that your program produces the desired

output.

Practice 6-2: Detailed Level: Matching Parentheses by Using a Deque

Overview

In this practice, you use the Deque object to match parentheses in a programming statement.

Assumptions

You have reviewed the collections section of this lesson.

Summary

Use the Deque data structure as a stack to match parentheses in a programming statement.

You will be given several sample lines containing logical statements. Test the lines to ensure

that the parentheses match, return true if they do, false if they do not.

For example, the output from the program might look like the following.

Line 0 is valid

Line 1 is invalid

Line 2 is invalid

Line 3 is valid

Tasks

Open the Generics-Practice02 project and make the following changes.

1. Modify the processLine() method in ParenMatcher.java to read a line in and convert

the string into an array of characters. Clear the stack and convert the line to a character
array.

stack.clear();

curLine = line.toCharArray();

2. In the same method, loop through the array. Push “(” onto the stack. When a “)” is

encountered, pop a “(” from the stack. If “(” is left on the stack, or you attempt to perform a

pop operation on an empty stack, the parentheses do not match, return false. Otherwise,

return true. To do this, add the following code to the processLine method (replace the

return true; statement).

for (char c:curLine){

switch (c){

case '(':stack.push(c);break;

case ')':{

if (stack.size() > 0){

stack.pop();

} else {

return false;

}

break;

}

}

}

if (stack.size()> 0){

return false; // Missing match invalid expression

} else {

return true; //

}

3. Run the ParanMatcher.java class to ensure that your program produces the desired

output.

Practice 6-3: Summary Level: Counting Inventory and Sorting by

Using Comparators

Overview

In this practice, you process shirt-related transactions for a Duke’s Choice store. Compute the
inventory level for a number of shirts. Then print out the shirt data sorted by description and by

inventory count.

Assumptions

You have reviewed all the content in this lesson.

Summary

Any Duke’s Choice stores carry a number of products including shirts. In this practice, process
the shirt-related transactions and calculate the inventory levels. After the levels have been

calculated, print a report sorted by description and a report sorted by inventory count. You will
create two classes that implement the Comperator interface to allow sorting shirts by count and

by description.

For example, the output from the program might look like the following.

=== Inventory Report - Description ===

Shirt ID: P002

Description: Black Polo Shirt

Color: Black

Size: M

Inventory: 15

Shirt ID: P001

Description: Blue Polo Shirt

Color: Blue

Size: L

Inventory: 24

Shirt ID: P003

Description: Maroon Polo Shirt

Color: Maroon

Size: XL

Inventory: 20

Shirt ID: P004

Description: Tan Polo Shirt

Color: Tan

Size: S

Inventory: 19

=== Inventory Report - Count ===

Shirt ID: P002

Description: Black Polo Shirt

Color: Black

Size: M

Inventory: 15

Shirt ID: P004

Description: Tan Polo Shirt

Color: Tan

Size: S

Inventory: 19

Shirt ID: P003

Description: Maroon Polo Shirt

Color: Maroon

Size: XL

Inventory: 20

Shirt ID: P001

Description: Blue Polo Shirt

Color: Blue

Size: L

Inventory: 24

Tasks

Open the Generics-Practice03 project and make the following changes.

1. Review the Shirt class and InventoryCount interface to see how the Shirt class has

changed to support inventory features.

2. Review the DukeTransaction class to see how transactions are defined for this program.

3. Update the SortShirtByCount Comparator class to sort shirts by count.

4. Update the SortShirtByDesc Comparator class to sort shirts by description.

5. Update the TestItemCounter class to process the shirts and transactions and produce

the desired report.

 Loop through the transactions and update the appropriate shirt object contained in the

polos map.

 Each Shirt class implements the InventoryCount interface. Use those methods and

the count field to increment and decrement the inventory levels.

 Print the list of shirts by description.

 Print the list of shirts by count

6. Run the TestItemCounter.java class to ensure that your program produces the desired

output.

Practice 6-3: Detailed Level: Counting Inventory and Sorting by Using

Comparators

Overview

In this practice, you process shirt-related transactions for a Duke’s Choice store. Compute the
inventory level for a number of shirts. Then print out the shirt data sorted by description and by

inventory count.

Assumptions

You have reviewed all the content in this lesson.

Summary

Any Duke’s Choice stores carry a number of products including shirts. In this practice, process
the shirt-related transactions and calculate the inventory levels. Once the levels have been

calculated print a report sorted by description and a report sorted by inventory count. You will
create two classes that implement the Comperator interface to allow sorting shirts by count and

by description.

For example, the output from the program might look like the following.

=== Inventory Report - Description ===

Shirt ID: P002

Description: Black Polo Shirt

Color: Black

Size: M

Inventory: 15

Shirt ID: P001

Description: Blue Polo Shirt

Color: Blue

Size: L

Inventory: 24

Shirt ID: P003

Description: Maroon Polo Shirt

Color: Maroon

Size: XL

Inventory: 20

Shirt ID: P004

Description: Tan Polo Shirt

Color: Tan

Size: S

Inventory: 19

=== Inventory Report - Count ===

Shirt ID: P002

Description: Black Polo Shirt

Color: Black

Size: M

Inventory: 15

Shirt ID: P004

Description: Tan Polo Shirt

Color: Tan

Size: S

Inventory: 19

Shirt ID: P003

Description: Maroon Polo Shirt

Color: Maroon

Size: XL

Inventory: 20

Shirt ID: P001

Description: Blue Polo Shirt

Color: Blue

Size: L

Inventory: 24

Tasks

Open the Generics-Practice03 project and make the following changes.

1. Review the Shirt class and InventoryCount interface to see how the Shirt class has

changed to support inventory features.

2. Review the DukeTransaction class to see how transactions are defined for this program.

3. Update the SortShirtByCount Comparator class to sort shirts by count.

public class SortShirtByCount implements Comparator<Shirt>{

public int compare(Shirt s1, Shirt s2){

Long c1 = new Long(s1.getCount());

Long c2 = new Long(s2.getCount());

return c1.compareTo(c2);

}

}

4. Update the SortShirtByDesc Comparator class to sort shirts by description.

public class SortShirtByDesc implements Comparator<Shirt>{

public int compare(Shirt s1, Shirt s2){

return

s1.getDescription().compareTo(s2.getDescription());

}

}

5. Update the TestItemCounter class to process the shirts and transactions and produce

the desired report.

 Loop through the transactions and update the appropriate shirt object contained in the

polos Map. This will produce an inventory count for each product.

// Count the shirts

for (DukeTransaction transaction:transactions){

if (polos.containsKey(transaction.getProductID())){

currentShirt = polos.get(transaction.getProductID());

} else {

System.out.println("Error: Invalid part number");

}

switch (transaction.getTransactionType()) {

case "Purchase":currentShirt.

addItems(transaction.getCount()); break;

case "Sale":currentShirt.

removeItems(transaction.getCount()); break;

default: System.out.println("Error: Invalid Transaction

Type"); continue;

}

}

 Print the list of shirts by description.

// Convert to List

List<Shirt> poloList = new ArrayList<>(polos.values());

// Init Comparators

Comparator sortDescription = new SortShirtByDesc();

Comparator sortCount = new SortShirtByCount();

// Print Results - Sort by Description

Collections.sort(poloList, sortDescription);

System.out.println("=== Inventory Report - Description ===");

for(Shirt shirt:poloList){

System.out.println(shirt.toString());

}

 Print the list of shirts by count.

// Print Results - Sort by Count

Collections.sort(poloList, sortCount);

System.out.println("=== Inventory Report - Count ===");

for(Shirt shirt:poloList){

System.out.println(shirt.toString());

}

6. Run the TestItemCounter.java class to ensure that your program produces the desired

output.

