

Practices for Lesson 11

Practices Overview

In these practices, you will use the multithreaded features of the Java programming language.

Practice 11-1: Summary Level: Synchronizing Access to Shared Data

Overview

In this practice, you will add code to an existing application. You must determine whether the
code is run in a multithreaded environment, and, if so, make it thread-safe.

Assumptions

You have reviewed the sections covering the use of the Thread class and the synchronized
keyword of this lesson.

Summary

You will open a project that purchases shirts from a store. The file-reading code will be provided
to you. Your task is to add the appropriate exception handling code.

Tasks

1. Open the project Synchronized as the main project.

a. Select File > Open Project.

b. Browse to D:\labs\11\practices. (or your other folder)

c. Select Synchronized and select the "Open as Main Project" check box.

d. Click the Open Project button.

2. Expand the project directories but avoid opening and review the provided classes at this

point. You will attempt to discover whether this application is multithreaded by observing the

behavior of code that you provide.

3. Create a PurchasingAgent class in the com.example package.

4. Complete the PurchasingAgent class.

a. Add a purchase method.

public void purchase() {}

b. Complete the purchase method. The purchase() method should:

 Obtain a Store reference. Note that the Store class implements the Singleton
design pattern.

Store store = Store.getInstance();

 Buy a Shirt.

 Verify that the store has at least one shirt in stock.

store.getShirtCount()

 Use the store to authorize a credit card purchase. Use a credit card account

number of "1234" and a purchase amount of 15.00. A boolean result is returned.

store.authorizeCreditCard("1234", 15.00)

 If there are shirts in stock and the credit card purchase was authorized, you should

take a shirt from the store.

Shirt shirt = store.takeShirt();

 Print out the shirt and a success message if a shirt was acquired or a failure
message if one was not.

5. Run the project multiple times. Note that the store contains only a single shirt. You can see

many possible variations of output. You might see:

 Two success messages and two shirts (output may appear in varying order)

 Two success messages, one shirt, and one null

 Two success messages, one shirt, and one exception

 One success message, one shirt, and one failure message (desired behavior, but least
likely)

6. Discover how the PurchasingAgent class is being used.

a. Use a constructor and a print statement to discover how many instances of the

PurchasingAgent class are being created when running the application.

Reminder: Sometimes objects are created per-request and sometimes an object may

be shared by multiple requests. The variations in the model affect which code must be

thread-safe.

b. Within the purchase method use the Thread.currentThread() method to obtain

a reference to the thread currently executing the purchase() method. Use a single
print statement to print the name and ID of the executing thread.

c. Run the project and observe the output.

7. Open the Store class and add a delay to the authorizeCreditCard method.

 Obtain a random number in the range of 1–3, the number of seconds to delay. Print a
message indicating how many seconds execution will be delayed.

int seconds = (int) (Math.random() * 3 + 1);

 Use the appropriate static method in the Thread class to delay execution for 1 to 3
seconds.

Optional Task: What if your delay is interrupted? How can you be sure that execution is

delayed for the desired number of seconds? Or should a different action be taken?

8. Run the project multiple times. You should see a stack trace for a
java.util.NoSuchElementException. Locate the line within the

com.example.PurchasingAgent.purchase method that is displayed in the stack

trace. Review the action occurring on that line.

9. Use a synchronized code block to create predictable behavior.

 Modify the purchase method in the PurchasingAgent class to contain a

synchronized code block.

Note: Adding synchronized to the method signature or using a synchronized

block that uses the this object’s monitor will not work.

10. Run the project. You should now see the desired behavior. In the output window, you
should see one success message, one shirt, and one failure message.

Practice 11-1: Detailed Level: Synchronizing Access to Shared Data

Overview

In this practice, you will add code to an existing application. You must determine whether the
code is run in a multithreaded environment, and, if so, make it thread-safe.

Assumptions

You have reviewed the sections covering the use of the Thread class and the synchronized
keyword of this lesson.

Summary

You will open a project that purchases shirts from a store. The file-reading code will be provided
to you. Your task is to add the appropriate exception handling code.

Tasks

1. Open the project Synchronized as the main project.

a. Select File > Open Project.

b. Browse to D:\labs\11\practices. (or your other folder)

c. Select Synchronized and select the "Open as Main Project" check box.

d. Click the Open Project button.

2. Expand the project directories but avoid opening and review the provided classes at this

point. You will attempt to discover whether this application is multithreaded by observing the

behavior of code that you provide.

3. Create a PurchasingAgent class in the com.example package.

4. Complete the PurchasingAgent class.

a. Add a purchase method. The purchase() method should:

 Obtain a Store reference. Note that the Store class implements the Singleton

design pattern.

 Buy a Shirt.

 Verify that the store has at least one shirt in stock.

 Use the store to authorize a credit card purchase. Use a credit card account

number of "1234" and a purchase amount of 15.00. A boolean result is returned.

 If there are shirts in stock and the credit card purchase was authorized, you should
take a shirt from the store.

 Print out the shirt and a success message if a shirt was acquired or a failure

message if one was not.

public class PurchasingAgent {

public void purchase() {

Store store = Store.getInstance();

if (store.getShirtCount() > 0 &&

store.authorizeCreditCard("1234", 15.00)) {

Shirt shirt = store.takeShirt();

System.out.println("The shirt is ours!");

System.out.println(shirt);

} else {

System.out.println("No shirt for you");

}

}

}

5. Run the project multiple times. Note that the store contains only a single shirt. You can see
many possible variations of output. You might see:

 Two success messages and two shirts (output may appear in varying order)

Adding a shirt to the store.

Total shirts in stock: 1

The shirt is ours!

The shirt is ours!

Shirt ID: 1

Description: Polo

Color: Rainbow

Size: Large

Shirt ID: 1

Description: Polo

Color: Rainbow

Size: Large

 Two success messages, one shirt, and one null

Adding a shirt to the store.

Total shirts in stock: 1

The shirt is ours!

The shirt is ours!

null

Shirt ID: 1

Description: Polo

Color: Rainbow

Size: Large

 Two success messages, one shirt, and one exception

Adding a shirt to the store.

Total shirts in stock: 1

The shirt is ours!

Shirt ID: 1

Description: Polo

Color: Rainbow

Size: Large

Exception in thread "Thread-0" java.util.NoSuchElementException

 One success message, one shirt, and one failure message (desired behavior but least
likely)

Adding a shirt to the store.

Total shirts in stock: 1

The shirt is ours!

Shirt ID: 1

Description: Polo

Color: Rainbow

Size: Large

No shirt for you

6. Discover how the PurchasingAgent class is being used.

a. In the PurchasingAgent class, use a constructor and a print statement to discover
how many instance of the PurchasingAgent class are being created when running
the application.

public PurchasingAgent() {

System.out.println("Creating a purchasing agent");

}

Reminder: Sometimes objects are created per-request and sometimes an object may

be shared by multiple requests. The variations in the model affect which code must be

thread-safe.

b. Within the purchase method use the Thread.currentThread() method to obtain

a reference to the thread currently executing the purchase() method. Use a single
print statement to print the name and ID of the executing thread.

Thread t = Thread.currentThread();

System.out.println("Thread:" + t.getName() + "," + t.getId());

c. Run the project and observe the output.

7. Open the Store class and add a delay to the authorizeCreditCard method.

 Math.random() is used to obtain a random number in the range of 1–3, the number of
seconds to delay.

int seconds = (int) (Math.random() * 3 + 1);

System.out.println("Sleeping for " + seconds + " seconds");

try {

Thread.sleep(seconds * 1000);

} catch (InterruptedException e) {

System.out.println("Interrupted");

}

8. Run the project multiple times. You should see a stack trace for a
java.util.NoSuchElementException. Locate the line within the

com.example.PurchasingAgent.purchase method that is displayed in the stack

trace. The exception is being generated by the call to store.takeShirt().

Note: The delay introduced in the previous step makes it more likely that concurrent
PurchasingAgent.purchase methods calls will both believe that a shirt can be taken

but take the shirt at a different time. Taking the shirt at the near the same time typically

results in some of the other errors shown in step 5.

9. Use a synchronized code block to create predictable behavior.

 Modify the purchase method in the PurchasingAgent class to contain a
synchronized code block.

synchronized (store) {

if (store.getShirtCount() > 0 &&

store.authorizeCreditCard("1234", 15.00)) {

Shirt shirt = store.takeShirt();

System.out.println("The shirt is ours!");

System.out.println(shirt);

} else {

System.out.println("No shirt for you");

}

}

Note: Adding synchronized to the method signature or using a synchronized

block that uses the this object’s monitor will not work.

10. Run the project. You should now see the desired behavior. In the output window, you
should see one success message, one shirt, and one failure message.

Adding a shirt to the store.

Total shirts in stock: 1

The shirt is ours!

Shirt ID: 1

Description: Polo

Color: Rainbow

Size: Large

No shirt for you

Practice 11-2: Summary Level: Implementing a Multithreaded Program

Overview

In this practice, you will create a new project and start a new thread.

Assumptions

You have reviewed the sections covering the use of the Thread class.

Summary

You will create a project that slowly prints an incrementing number. A new thread will be used to
increment and print the number. The application should wait for Enter to be pressed before

interrupting any threads.

Tasks

1. Create a new project ThreadInterrupted as the main project.

a. Select File > New Project.

b. Select Java under Categories and Java Application under Projects. Click the Next
button.

c. Enter the following information in the “Name and Location” dialog box:

 Project Name: ThreadInterrupted

 Project Location: D:\labs\11\practices. (or your other folder)

 (checked) Create Main Class: com.example.ThreadInterruptedMain

 (checked) Set as Main Project

d. Click the Finish button.

2. Create a Counter class in the com.example package.

3. Complete the Counter class. The Counter class should:

 Implement the Runnable interface.

 Within the run method:

 Create an int variable called x and initialize it to zero.

 Construct a loop that will repeat until the executing thread is interrupted.

 Within the loop, print and increment the value of x.

 Within the loop, delay for 1 second. Return from the run method or exit the loop if the
thread is interrupted while delayed.

4. Add the following to the main method in the ThreadInterruptedMain class:

 Create a Counter instance.

 Create a thread and pass to its constructor the runnable Counter.

 Start the thread.

5. Run the project. You should see an incrementing sequence of numbers with a one second

delay between each number. Notice that while the main method has completed the
application continues to run.

6. Stop the project.

a. Open the Run menu.

b. Click Stop Build/Run.

Note: You can also stop a build/run by clicking the red square along the left side of the

output window.

7. Modify the project properties to support the try-with-resources statement.

8. Modify the main method in the ThreadInterruptedMain class.

 After starting the thread, wait for Enter to be pressed in the output window. You can use
the following code:

try(BufferedReader br = new BufferedReader(new

InputStreamReader(System.in))) {

br.readLine();

} catch (IOException e) {}

Note: You may need to fix your imports and update the project properties to support
JDK 7 features.

 Print out a message indicating whether or not the thread is alive.

 Interrupt the thread.

 Delay for one second (to allow the thread time to complete) and then print out a

message indicating whether or not the thread is alive.

9. Run the project. You should see an incrementing sequence of numbers with a one second
delay between each number. Press Enter while the output window is selected to gracefully

terminate the application.

Practice 11-2: Detailed Level: Implementing a Multithreaded Program

Overview

In this practice, you will create a new project and start a new thread.

Assumptions

You have reviewed the sections covering the use of the Thread class.

Summary

You will create a project that slowly prints an incrementing number. A new thread will be used to
increment and print the number. The application should wait for Enter to be pressed before

interrupting any threads.

Tasks

1. Create a new project ThreadInterrupted as the main project.

a. Select File > New Project.

b. Select Java under Categories and Java Application under Projects. Click the Next
button.

c. Enter the following information in the “Name and Location” dialog box:

 Project Name: ThreadInterrupted

 Project Location: D:\labs\11\practices. (or your other folder)

 (checked) Create Main Class: com.example.ThreadInterruptedMain

 (checked) Set as Main Project

d. Click the Finish button.

2. Create a Counter class in the com.example package.

3. Complete the Counter class. The Counter class should:

 Implement the Runnable interface.

 Within the run method:

 Create an int variable called x and initialize it to zero.

 Construct a loop that will repeat until the executing thread is interrupted.

 Within the loop, print and increment the value of x.

 Within the loop, delay for 1 second. Return from the run method or exit the loop if the
thread is interrupted while delayed.

int x = 0;

while(!Thread.currentThread().isInterrupted()) {

System.out.println("The current value of x is: " + x++);

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

return;

}

}

4. Add the following to the main method in the ThreadInterruptedMain class:

 Create a Counter instance.

 Create a thread and pass to its constructor the runnable Counter.

 Start the thread.

Runnable r = new Counter();

Thread t = new Thread(r);

t.start();

5. Run the project. You should see an incrementing sequence of numbers with a one second

delay between each number. Notice that while the main method has completed the

application continues to run.

6. Stop the project.

a. Open the Run menu.

b. Click Stop Build/Run.

Note: You can also stop a build/run by clicking the red square along the left side of the

output window.

7. Modify the project properties to support the try-with-resources statement.

a. Right-click the ThreadInterrupted project and click Properties.

b. In the Project Properties dialog box select the Sources category.

c. In the Source/Binary Format drop-down list select JDK 7.

d. Click the OK button.

8. Modify the main method in the ThreadInterruptedMain class.

 After starting the thread, wait for Enter to be pressed in the output window. You can use

the following code:

try(BufferedReader br = new BufferedReader(new

InputStreamReader(System.in))) {

br.readLine();

} catch (IOException e) {}

 Add the needed import statements.

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

 Print out a message indicating whether or not the thread is alive.

System.out.println("Thread is alive:" + t.isAlive());

 Interrupt the thread.

t.interrupt();

 Delay for one second (to allow the thread time to complete), and then print out a

message indicating whether or not the thread is alive.

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

}

System.out.println("Thread is alive:" + t.isAlive());

9. Run the project. You should see an incrementing sequence of numbers with a one second
delay between each number. Press Enter while the output window is selected to gracefully

terminate the application.

