

Practices for Lesson 13

Practices Overview

In these practices, you will work with the JavaDB (Derby) database, creating, reading, updating,
and deleting data from a SQL database by using the Java JDBC API.

Practice 13-1: Summary Level: Working with the Derby Database and

JDBC

Overview

In this practice, you will start the JavaDB (Derby) database, load some sample data using a
script, and write an application to read the contents of an employee database table and print the

results to the console.

Tasks

1. Create the Employee Database by using the SQL script provided in the resource directory.

a. Open the Services window by selecting Windows > Services, or by pressing Ctrl-5.

b. Expand the Databases folder.

c. Right-click JavaDB and select Start Server.

d. Right-click JavaDB again and select Create Database.

e. Enter the following information:

Window/Page Description Choices or Values

Database Name EmployeeDB

User Name public

Password tiger

Confirm Password tiger

f. Click OK

g. Right-click the connection that you created:

jdbc:derby://localhost:1527/EmployeeDB[public on PUBLIC]and select

Connect.

h. Select File > Open File.

i. Browse to D:\labs\resources and open the EmployeeTable.sql script. The file

will open in a SQL Execute window.

j. Select the connection that you created from the drop-down list, and click the Run-SQL

icon or press Ctrl-Shift-E to run the script.

k. Expand the EmployeeDB connection. You will see that the PUBLIC schema is now

created. Expand the PUBLIC Schema and look at the table Employee.

l. Right-click the connection again and select Execute Command to open another SQL
window. Enter the command:
select * from Employee

and click the Run-SQL icon to see the contents of the Employee table.

2. Open the SimpleJDBCExample project and run it.

a. You should see all the records from the Employee table displayed.

3. (Optional) Add a SQL command to add a new Employee record.

a. Modify the SimpleJDBCExample class to add a new Employee record to the

database.

b. The syntax for adding a row in a SQL database is:
INSERT INTO <table name> VALUES (<column 1 value>, <column 2

value>, ...)

c. Use the Statement executeUpdate method to execute the query. What is the return

type for this method? What value should the return type be? Test to make sure that the
value of the return is correct.

Practice 13-1: Detailed Level: Working with the Derby Database and

JDBC

Overview

In this practice, you will start the JavaDB (Derby) database, load some sample data using a
script, and write an application to read the contents of an employee database table and print the

results to the console.

Tasks

1. Create the Employee Database by using the SQL script provided in the resource directory.

a. Open the Services Window by selecting Windows > Services, or by pressing Ctrl-5.

b. Expand the Databases folder.

c. Right-click JavaDB and select Start Server.

d. Right-click JavaDB again and select Create Database.

e. Enter the following information:

Window/Page Description Choices or Values

Database Name EmployeeDB

User Name public

Password tiger

Confirm Password tiger

f. Click OK.

g. Right-click the connection that you created:

jdbc:derby://localhost:1527/EmployeeDB[public on PUBLIC]and select

Connect.

h. Select File > Open File.

i. Browse to D:\labs\resources and open the EmployeeTable.sql script. The file

will open in a SQL Execute window.

j. Select the connection that you created from the drop-down list and click the Run-SQL

icon or press Ctrl-Shift-E to run the script.

k. Expand the EmployeeDB connection. You will see that the PUBLIC schema is now

created. Expand the PUBLIC Schema, expand Tables, and then expand the table

Employee.

l. Right-click the connection again and select Execute Command to open another SQL
window. Enter the command:
select * from Employee

and click the Run-SQL icon to see the contents of the Employee table.

2. Open the SimpleJDBCExample Project and run it.

a. Select Windows > Projects, or press Ctrl-1.

b. Select File > Open Project.

c. Select D:\labs\13\practices\SimpleJDBCExample. (or your other
folder)

d. Select “Open as Main Project.”

e. Click OK.

f. Expand the Source Packages and test packages and look at the

SimpleJDBCExample.java class.

g. Run the project: Right-click the project and select Run, or click the Run icon, or press
F6.

h. You should see all the records from the Employee table displayed.

3. (Optional) Add a SQL command to add a new Employee record.

a. Modify the SimpleJDBCExample class to add a new Employee record to the

database.

b. The syntax for adding a row in a SQL database is:
INSERT INTO <table name> VALUES (<column 1 value>, <column 2

value>, ...)

c. Use the Statement executeUpdate method to execute the query. What is the return

type for this method? What value should the return type be? Test to make sure that the
value of the return is correct.

d. Your code may look like this:

query = "INSERT INTO Employee VALUES (200, 'Bill',

'Murray','1950-09-21', 150000)";

if (stmt.executeUpdate(query) != 1) {

System.out.println ("Failed to add a new employee record");

}

Note: If you run the application again, it will throw an exception, because this key already

exists in the database.

Practice 13-2: Summary Level: Using the Data Access Object Pattern

Overview

In this practice, you will take the existing Employee DAO Memory application and refactor the
code to use JDBC instead. The solution from the “Exceptions and Assertions” lesson has been

renamed to EmployeeDAOJDBC. You will need to create an EmployeeDAOJDBCImpl class to

replace the EmployeeDAOMemoryImpl class, and modify the EmployeeDAOFactory to

return an instance of your new implementation class instead of the Memory version.

You will not have to alter the other classes. This example illustrates how a well designed Data

Access Object application can use an alternative persistence class without significant change.

Tasks

1. Open and examine the EmployeeDAOJDBC project in the

D:\labs\13\practices folder. (or your other folder)

a. In the com.example.test package, you see the class

EmployeeTestInteractive. This class contains the main method and provides a

console-based user interface. Through this UI, you will be able to create new records,
read all the records, update a record, and delete a record from the Employee
database. Note how the main method creates an instance of a Data Access Object
(DAO).

b. In the com.example.model package, look at the Employee class. This class is a

Plain Old Java Object (POJO) that encapsulates all of the data from a single employee

record and row in the Employee table. Note that there are no set methods in this class,
only get methods. Once an Employee object is created, it cannot be changed. It is

immutable.

c. Expand the com.example.dao package. Look at the EmployeeDAO class and you

see the methods that an implementation of this interface is expected to implement.

Each of these methods throws a DAOException. Note that this interface extends

AutoCloseable. Therefore, you will need to provide a close() method to satisfy the

contract with AutoCloseable.

d. Look at the EmployeeDAOFactory. You see that this class has one method,

getFactory(), that returns an instance of an EmployeeDAOMemoryImpl.

e. Look at the EmployeeDAOMemoryImpl class. This class is the workhorse of the DAO

pattern. This is the class that the EmployeeDAOJDBCFactory returns as an instance

from the createEmployeeDAO method. This is the class that you will replace with a

JDBC implementation.

2. Create a new class, EmployeeDAOJDBCImpl, that implements EmployeeDAO in the

com.example.dao package.

a. Note that the class has an error.

3. Implement the method signatures defined by EmployeeDAO.

a. Click anywhere in the line that is showing an error (a light bulb with a red dot on it):

public class EmployeeDAOJDBCImpl implements EmployeeDAO {

b. Press the Alt-Enter key combination to show the suggestions for fixing the error in this
class. You should see the following:

Note: Your line numbers may differ from the picture shown.

c. The class must implement all the methods in the interface because this is a concrete

class (not abstract). You can have NetBeans provide all the method bodies by pressing

the Enter key to accept the suggestion “Implement all abstract methods.”

d. You will notice that the error in the file goes away immediately, and NetBeans has

provided all the method signatures based on the EmployeeDAO interface declarations.

e. Your next task is to add a constructor and fill in the bodies of the methods.

4. Add a private instance variable, con, to hold a Connection object instance.

5. Write a package-level constructor for the class. The constructor for this class will create an

instance of a Connection object that the methods of this class can reuse during the

lifetime of the application. Be sure to catch a SQLException.

6. Write a method body for the add method. The add method creates a new record in the

database from the Employee object passed in as a parameter. Recall that the SQL

command to create a new record in the database is: INSERT INTO <table> VALUES

(...).

Note: Use single quotes for the strings and the date.

a. Rethrow any SQLException caught as a DAOException.

7. Write a method body for the findById method. This method is used by the update and

delete methods and is used to locate a single record to display. Recall that the SQL

command to read a single record is: SELECT * FROM <table> WHERE <pk>=<value>.

a. Rethrow any SQLException caught as a DAOException.

8. Write a method body for the update method. The update method updates an existing

record in the database from the Employee object passed in as a parameter. Recall that the

SQL command to create a new record in the database is: UPDATE <table> SET

COLUMNNAME=<value>, COLUMNNAME=<value>, ... WHERE <pk>=<value>.

Note: Be sure to add single quotes around string and date values.

a. Rethrow any SQLException caught as a DAOException.

9. Write a method body for the delete method. The delete method tests to see whether an

employee exists in the database by using the findById method, and then deletes the

record if it exists. Recall that the SQL command to delete a record from the database is:

DELETE FROM <table> WHERE <pk>=<value>.

a. Rethrow any SQLException caught as a DAOException.

10. Write the method body for the getAllEmployees method. This method returns an array of

Employee records. The SQL query to return all records is quite simple: SELECT * FROM

<table>.

a. Rethrow any SQLException caught as a DAOException.

11. Write the method body for the close method. This method is defined by the

AutoCloseable interface. This method should explicitly close the Connection object

that you created in the constructor.

a. Rather than rethrow the SQLException, simply report it.

12. Save the class. Fix any missing imports and compilation errors if you have not already done
so.

13. Update the EmployeeDAOFactory to return an instance of your new

EmployeeDAOJDBCImpl.

return new EmployeeDAOJDBCImpl();

14. Add the JDBC Derby driver class to the project, but adding the derbyclient.jar file to

the Libraries for the project.

a. Right-click the Libraries folder in the project and select Add Jar/Folder.

b. Browse to D:\Program Files\Java\jdk1.7.0\db\lib. (or your other
folder)

c. Select derbyclient.jar.

d. Absolute Path should be checked.

e. Click Open.

15. Save the updated class, and if you have no errors, compile and run the project. This

application has an interactive feature that allows you to query the database and read one or
all of the records, find an employee by ID, and update and delete an employee record.

Practice 13-2: Detailed Level: Using the Data Access Object Pattern

Overview

In this practice, you will take the existing Employee DAO Memory application and refactor the
code to use JDBC instead. The solution from the “Exceptions and Assertions” lesson has been

renamed to EmployeeDAOJDBC. You will need to create an EmployeeDAOJDBCImpl class to

replace the EmployeeDAOMemoryImpl class, and modify the EmployeeDAOFactory to

return an instance of your new implementation class instead of the Memory version.

You will not have to alter the other classes. This example illustrates how a well designed Data

Access Object application can use an alternative persistence class without significant change.

Tasks

1. Open and examine the EmployeeDAOJDBC project in the

D:\labs\13\practices folder. (or your other folder)

a. In the com.example.test package, you see the class

EmployeeTestInteractive. This class contains the main method and provides a

console-based user interface. Through this UI, you will be able to create new records,
read all the records, update a record, and delete a record from the Employee
database. Note how the main method creates an instance of a Data Access Object
(DAO).

b. In the com.example.model package, look at the Employee class. This class is a

Plain Old Java Object (POJO) that encapsulates all the data from a single employee

record and row in the Employee table. Note that there are no set methods in this class,
only get methods. Once an Employee object is created, it cannot be changed. It is

immutable.

c. Expand the com.example.dao package. Look at the EmployeeDAO class and you

see the methods that an implementation of this interface is expected to implement.

Each of these methods throws a DAOException. Note that this interface extends

AutoCloseable; therefore, you will need to provide a close() method to satisfy the

contract with AutoCloseable.

d. Look at the EmployeeDAOFactory. You see that this class has one method,

getFactory(), that returns an instance of an EmployeeDAOMemoryImpl.

e. Look at the EmployeeDAOMemoryImpl class. This class is the workhorse of the DAO

pattern. This is the class that the EmployeeDAOJDBCFactory returns as an instance

from the createEmployeeDAO method. This is the class that you will replace with a

JDBC implementation.

2. Create a new class, EmployeeDAOJDBCImpl, in the com.example.dao package.

a. Right-click on the com.example.dao package and choose New Java Class

b. Enter EmployeeDAOJDBCImpl as the class name and click Finish.

c. Change this class to implement EmployeeDAO.

d. Note that causes an error.

3. Implement the method signatures defined by EmployeeDAO.

a. Click anywhere in the line that is showing an error (a light bulb with a red dot on it):

public class EmployeeDAOJDBCImpl implements EmployeeDAO {

b. Press the Alt-Enter key combination to show the suggestions for fixing the error in this

class. You should see the following:

Note: Your line numbers may differ from the picture shown.

c. The class must implement all the methods in the interface because this is a concrete

class (not abstract). You can have NetBeans provide all of the method bodies by

pressing the Enter key to accept the suggestion “Implement all abstract methods.”

d. You will notice that the error in the file goes away immediately, and NetBeans has

provided all the method signatures based on the EmployeeDAO interface declarations.

e. Your next task is to add a constructor and fill in the bodies of the methods.

4. Add a private instance variable, con, to hold a Connection object instance.

private Connection con = null;

5. Write a constructor for the class. The constructor for this class will create an instance of a

Connection object that the methods of this class can reuse during the lifetime of the

application.

a. Write the constructor to use package-level access. This will enable only classes within

the package to create an instance of this class (like the EmployeeDAOFactory).

EmployeeDAOJDBCImpl() {

b. Open the connection using the JDBC URL, name, and password from the

SimpleJDBCExample application:

String url = "jdbc:derby://localhost:1527/EmployeeDB";

String username = "public";

String password = "tiger";

c. In a try block (not a try-with-resources, because you want to keep this connection

open until you exit the application) create an instance of a Connection object and

catch any exception. If the connection cannot be made, exit the application.

Note: Ideally you would rather indicate to the user that the connection could not be

made and retry the connection a number of times before exiting.

try {

con = DriverManager.getConnection(url, username, password);

} catch (SQLException se) {

System.out.println("Error obtaining connection with the

database: " + se);

System.exit(-1);

}

6. Write a method body for the add method. The add method creates a new record in the

database from the Employee object passed in as a parameter. Recall that the SQL

command to create a new record in the database is: INSERT INTO <table> VALUES

(...).

a. Delete the boiler-plate code created by NetBeans for the add method.

b. Look at the other methods in the class. They each begin by creating an instance of a

Statement object in a try-with-resources statement:

try (Statement stmt = con.createStatement()) {

}

c. Inside the try block, create a query to insert the values passed in the Employee

instance to the database. Your query string should look something like this:

String query = "INSERT INTO EMPLOYEE VALUES (" + emp.getId()

+ ", '" + emp.getFirstName() + "', "

+ "'" + emp.getLastName() + "', "

+ "'" +

new java.sql.Date(emp.getBirthDate().getTime()) + "',"

+ emp.getSalary() + ")";

Note the use of single quotes for the strings and the date.

d. Since you are not expecting a result from the query, the appropriate Statement class

method to use is updateQuery. Make sure to test to see whether the statement

executed properly by looking at the integer result of the method. For example:

if (stmt.executeUpdate(query) != 1) {

throw new DAOException("Error adding employee");

}

e. At the end of the try block, catch any SQLException thrown, and wrap them in the

DAOException to be handled by the calling application. For example:

catch (SQLException se) {

throw new DAOException("Error adding employee in DAO", se);

}

7. Write a method body for the findById method. This method is used by the update and

delete methods and is used to locate a single record to display. Recall that the SQL

command to read a single record is: "SELECT * FROM <table> WHERE

<pk>=<value>".

a. Delete the boiler-plate code created by NetBeans for the findById method.

b. Create an instance of a Statement object in a try-with-resources block:

try (Statement stmt = con.createStatement()) {

}

c.

Inside the try block, write a query statement to include the integer id passed in as an

argument to the method and execute the query, returning a ResultSet instance:

String query = "SELECT * FROM EMPLOYEE WHERE ID=" + id;

ResultSet rs = stmt.executeQuery(query);

d. Test the ResultSet instance for null using the next() method and return the result

as a new Employee object:

if (!rs.next()) {

return null;

}

return (new Employee(rs.getInt("ID"),

rs.getString("FIRSTNAME"),

rs.getString("LASTNAME"),

rs.getDate("BIRTHDATE"),

rs.getFloat("SALARY")));

e. At the end of the try block, catch any SQLException thrown, and wrap them in the

DAOException to be handled by the calling application. For example

catch (SQLException se) {

throw new DAOException("Error finding employee in DAO", se);

}

8. Write a method body for the update method. The update method updates an existing

record in the database from the Employee object passed in as a parameter. Recall that the

SQL command to create a new record in the database is: "UPDATE <table> SET

COLUMNNAME=<value>, COLUMNNAME=<value>, ... WHERE <pk>=<value>".

Note: Be sure to add single quotes around string and date values.

a. Delete the boiler-plate code created by NetBeans for the update method.

b. Create an instance of a Statement object in a try-with-resources block:

try (Statement stmt = con.createStatement()) {

}

c. Inside the try block, create the SQL UPDATE query from the Employee object passed

in:

String query = "UPDATE EMPLOYEE "

+ "SET FIRSTNAME='" + emp.getFirstName() + "',"

+ "LASTNAME='" + emp.getLastName() + "',"

+ "BIRTHDATE='" + new

java.sql.Date(emp.getBirthDate().getTime()) + "',"

+ "SALARY=" + emp.getSalary()

+ "WHERE ID=" + emp.getId();

d. You may want to test to see that the update was successful by evaluating the return

value of the executeUpdate method:

if (stmt.executeUpdate(query) != 1) {

throw new DAOException("Error updating employee");

}

e. At the end of the try block, catch any SQLException thrown, and wrap them in the

DAOException to be handled by the calling application. For example

catch (SQLException se) {

throw new DAOException("Error updating employee in DAO",

se);

}

9. Write a method body for the delete method. The delete method tests to see whether an

employee exists in the database by using the findById method, and then deletes the

record if it exists. Recall that the SQL command to delete a record from the database is:
"DELETE FROM <table> WHERE <pk>=<value>".

a. Delete the boiler-plate code created by NetBeans for the delete method.

b. Call the findById method with the id passed in as a parameter and if the record

returned is null, throw a new DAOException.

Employee emp = findById(id);

if (emp == null) {

throw new DAOException("Employee id: " + id + " does not

exist to delete.");

}

c. Create an instance of a Statement object in a try-with-resources block:

try (Statement stmt = con.createStatement()) {

}

d. Inside the try block, create the SQL DELETE query and test the result returned to

make sure a single record was altered – throw a new DAOException if not:

String query = "DELETE FROM EMPLOYEE WHERE ID=" + id;

if (stmt.executeUpdate(query) != 1) {

throw new DAOException("Error deleting employee");

}

e. At the end of the try block, catch any SQLException thrown, and wrap them in the

DAOException to be handled by the calling application. For example:

catch (SQLException se) {

throw new DAOException("Error deleting employee in DAO",

se);

}

10. Write the method body for the getAllEmployees method. This method returns an array of

Employee records. The SQL query to return all records is quite simple: "SELECT * FROM

<table>".

a. Delete the boiler-plate code created by NetBeans for the getAllEmployees method.

b. Create an instance of a Statement object in a try-with-resources block:

try (Statement stmt = con.createStatement()) {

}

c. Inside the try block, create and execute the query to return all the employee records:

String query = "SELECT * FROM EMPLOYEE";

ResultSet rs = stmt.executeQuery(query);

d. The easiest way to create an array of employees to return is to use a Collection object,

ArrayList, and then convert the ArrayList object to an array. Iterate through the

ResultSet and add each record to the ArrayList. In the return statement, use the

toArray method to convert the collection to an array:

ArrayList<Employee> emps = new ArrayList<>();

while (rs.next()) {

emps.add(new Employee(rs.getInt("ID"),

rs.getString("FIRSTNAME"),

rs.getString("LASTNAME"),

rs.getDate("BIRTHDATE"),

rs.getFloat("SALARY")));

}

return emps.toArray(new Employee[0]);

e. At the end of the try block, catch any SQLException thrown, and wrap them in the

DAOException to be handled by the calling application. For example:

catch (SQLException se) {

throw new DAOException("Error getting all employees in DAO",

se);

}

11. Write the method body for the close method. This method is defined by the

AutoCloseable interface. This method should explicitly close the Connection object

that you created in the constructor.

a. Delete the boiler-plate code created by NetBeans for the close method.

b. In a try block (you must use a try block, because Connection.close throws an

exception that must be caught or rethrown), call the close method on the

Connection object instance, con. Rather than rethrow the exception, simply report it.

try {

con.close();

} catch (SQLException se) {

System.out.println ("Exception closing Connection: " + se);

}

12. Save the class. Fix any missing imports and compilation errors if you have not already.

13. Update the EmployeeDAOFactory to return an instance of your new

EmployeeDAOJDBCImpl.

return new EmployeeDAOJDBCImpl();

14. Add the JDBC Derby driver class to the project, by adding the derbyclient.jar file to

the Libraries for the project.

a. Right-click the Libraries folder in the project and select Add Jar/Folder.

b. Browse to D:\Program Files\Java\jdk1.7.0\db\lib. (or your other
folder)

c. Select derbyclient.jar.

d. Absolute Path should be checked.

e. Click Open.

15. Save the updated class, and if you have no errors, compile and run the project. This
application has an interactive feature that allows you to query the database and read one or
all of the records, find an employee by ID, and update and delete an employee record.

