

Practices for Lesson 7

Practices Overview

In these practices, you use regular expressions and String.split() to manipulate strings in

Java. For each practice, a NetBeans project is provided for you. Complete the project as
indicated in the instructions.

Practice 7-1: Summary Level: Parsing Text with split()

Overview

In this practice, parse comma-delimited text and convert the data into Shirt objects.

Assumptions

You have participated in the lecture for this lesson.

Summary

You have been given some comma-delimited shirt data. Parse the data, store it in shirt objects,
and print the results. The output from the program should look like the following.

=== Shirt List ===

Shirt ID: S001

Description: Black Polo Shirt

Color: Black

Size: XL

Shirt ID: S002

Description: Black Polo Shirt

Color: Black

Size: L

Shirt ID: S003

Description: Blue Polo Shirt

Color: Blue

Size: XL

Shirt ID: S004

Description: Blue Polo Shirt

Color: Blue

Size: M

Shirt ID: S005

Description: Tan Polo Shirt

Color: Tan

Size: XL

Shirt ID: S006

Description: Black T-Shirt

Color: Black

Size: XL

Shirt ID: S007

Description: White T-Shirt

Color: White

Size: XL

Shirt ID: S008

Description: White T-Shirt

Color: White

Size: L

Shirt ID: S009

Description: Green T-Shirt

Color: Green

Size: S

Shirt ID: S010

Description: Orange T-Shirt

Color: Orange

Size: S

Shirt ID: S011

Description: Maroon Polo Shirt

Color: Maroon

Size: S

Tasks

Open the StringsPractice01 project and make the following changes.

1. Edit the main method of the StringSplitTest.java file.

2. Parse each line of the shirts array.

3. Convert the shirt data into a List of Shirt objects.

4. Print out the list of shirts.

5. Run the StringSplitTest.java file and verify that your output is similar to that shown

in the “Summary” section of this practice.

Practice 7-1: Detailed Level: Parsing Text with split()

Overview

In this practice, parse comma-delimited text and convert the data into Shirt objects.

Assumptions

You have participated in the lecture for this lesson.

Summary

You have been given some comma-delimited shirt data. Parse the data, store it in shirt objects,
and print the results. The output from the program should look like the following.

=== Shirt List ===

Shirt ID: S001

Description: Black Polo Shirt

Color: Black

Size: XL

Shirt ID: S002

Description: Black Polo Shirt

Color: Black

Size: L

Shirt ID: S003

Description: Blue Polo Shirt

Color: Blue

Size: XL

Shirt ID: S004

Description: Blue Polo Shirt

Color: Blue

Size: M

Shirt ID: S005

Description: Tan Polo Shirt

Color: Tan

Size: XL

Shirt ID: S006

Description: Black T-Shirt

Color: Black

Size: XL

Shirt ID: S007

Description: White T-Shirt

Color: White

Size: XL

Shirt ID: S008

Description: White T-Shirt

Color: White

Size: L

Shirt ID: S009

Description: Green T-Shirt

Color: Green

Size: S

Shirt ID: S010

Description: Orange T-Shirt

Color: Orange

Size: S

Shirt ID: S011

Description: Maroon Polo Shirt

Color: Maroon

Size: S

Tasks

Open the StringsPractice01 project and make the following changes.

1. Edit the main method of the StringSplitTest.java file.

2. Parse each line of the shirts array. Create a Shirt object for each line and add the

Shirt to a List. A for loop to perform these steps could be as follows:

for(String curLine:shirts){

String[] e = curLine.split(",");

shirtList.add(new Shirt(e[0], e[1], e[2], e[3]));

}

3. Print out the list of shirts. A loop to do this could be like the following:

System.out.println("=== Shirt List ===");

for (Shirt shirt:shirtList){

System.out.println(shirt.toString());

}

4. Run the StringSplitTest.java file and verify that your output is similar to that shown

in the “Summary” section of this practice.

Practice 7-2: Summary Level: Creating a Regular Expression Search

Program

Overview

In this practice, create a program that searches a text file by using regular expressions.

Assumptions

You have participated in the lecture for this lesson.

Summary

Create a simple application that will loop through a text file (gettys.html) and search for text

by using regular expressions. If the desired text is found on a line, print out the line number and
the line text. For example, if you performed a search for “<h4>” the output would be:

9 <h4>Abraham Lincoln</h4>

10 <h4>Thursday, November 19, 1863</h4>

Tasks

Open the StringsPractice02 project and make the following changes. Please note that the

code to read a file has been supplied for you.

Note: The gettys.html file is located in the root of the project folder. To examine the file, with

the project open, click the Files tab. Double-click the file to open it and examine its contents.

1. Edit the FindText.java file.

2. Create a Pattern and a Matcher field.

3. Generate a Matcher based on the supplied Pattern object.

4. Search each line for the pattern supplied.

5. Print the line number and the line that has matching text.

6. Run the FindText.java file and search for these patterns.

 All lines that contain: <h4>

 All the lines that contain the word “to” (For example, line 17 should not be selected.)

 All the lines that start with 4 spaces’

 Lines that begin with “<p” or “<d”

 Lines that only contain HTML closing tags (for example, “</div>”)

7. (Optional) Modify the program to accept the file name and regular expression pattern on the
command line.

Practice 7-2: Detailed Level: Creating a Regular Expression Search

Program

Overview

In this practice, create a program that searches a text file by using regular expressions.

Assumptions

You have participated in the lecture for this lesson.

Summary

Create a simple application that will loop through a text file and search for text by using regular
expressions. If the desired text is found on a line, print out the line number and the line text. For
example, if you performed a search for “<h4>” the output would be:

9 <h4>Abraham Lincoln</h4>

10 <h4>Thursday, November 19, 1863</h4>

Tasks

Open the StringsPractice02 project and make the following changes. Please note that the

code to read a file has been supplied for you.

Note: The gettys.html file is located in the root of the project folder. To examine the file, with

the project open, click the Files tab. Double-click the file to open it and examine its contents.

1. Edit the FindText.java file.

2. Create fields for a Pattern and a Matcher object.

private Pattern pattern;

private Matcher m;

3. Outside the search loop, create and initialize your pattern object.

pattern = Pattern.compile("<h4>");

4. Inside the search loop, generate a Matcher based on the supplied Pattern object.

m = pattern.matcher(line);

5. Inside the search loop, search each line for the pattern supplied. Print the line number and
the line that has matching text.

if (m.find()) {

System.out.println(" " + c + " "+ line);

}

6. Run the FindText.java file and search for these patterns.

 All the lines that contain: <h4>

pattern = Pattern.compile("<h4>");

 All the lines that contain the word “to” (For example, line 17 should not be selected.)

pattern = Pattern.compile("\\bto\\b");

 All the lines that start with 4 spaces

pattern = Pattern.compile("^\\s{4}");

 Lines that begin with “<p” or “<d”

pattern = Pattern.compile("^<[p|d]");

 Lines that only contain HTML closing tags (for example, “</div>”)

pattern = Pattern.compile("^</.*?>$");

7. (Optional) Modify the program to accept the file name and regular expression pattern on the

command line.

Practice 7-3: Summary Level: Transforming HTML by Using Regular

Expressions

Overview

In this practice, use regular expressions to transform <p> tags into tags.

Assumptions

You have participated in the lecture for this lesson.

Summary

You have decided that you want to change the formatting of the gettys.html file. Instead of

using <p> tags, tags should be used. In addition, you think that the value for class

should be “sentence” instead of “line.” Use regular expressions to find the lines that you want to

change. Then use regular expressions to transform the tags and the attributes as described.
The transformed lines should be output to the console. The output should look like the following:

13 Four score and seven years ago our

fathers brought forth on this continent a new nation, conceived

in liberty, and dedicated to the proposition that all men are

created equal.

14 Now we are engaged in a great civil
war, testing whether that nation, or any nation, so conceived

and so dedicated, can long endure.

15 We are met on a great battle-field of
that war.

16 We have come to dedicate a portion of
that field, as a final resting place for those who here gave

their lives that that nation might live.

17 It is altogether fitting and proper
that we should do this.

21 But, in a larger sense, we can not

dedicate, we can not consecrate, we can not hallow this

ground.

…

One approach to the problem could be to break the algorithm into three steps.

1. Break the line into three parts: the start tag, the content, and the end tag.

2. Replace the current tags with a new tag.

3. Replace the attribute value with a new attribute value.

Then return the newly formatted line.

The method signatures to replace the tag and attributes might look like this:

public String replaceTag(String tag, String targetTag,

String replaceTag){ }

public String replaceAttribute(String tag, String attribute,

String value){

Tasks

Open the StringsPractice03 project and make the following changes. Please note that the

code to read a file has been supplied for you.

1. Edit the SearchReplace.java file.

2. Create a Pattern object to match the entire line.

3. As you loop through the file, do the following:

 Create a Matcher to match the current line.

 Execute the find() method to find a match.

 If there is a match, replace the start and end tags.

 Replace the attribute

4. Create a method that will replace the contents of any tag.

5. Create a method that will replace a tag’s attribute.

6. Run the SearchReplace.java file and produce the output shown in the “Summary”

section of this practice.

Practice 7-3: Detailed Level: Transforming HTML by Using Regular

Expressions

Overview

In this practice, use regular expressions to transform <p> tags into tags.

Assumptions

You have participated in the lecture for this lesson.

Summary

You have decided that you want to change the formatting of the gettys.html file. Instead of

using <p> tags, tags should be used. In addition, you think that the value for class
should be “sentence” instead of “line.” Use regular expressions to find the lines that you want to

change. Then use regular expressions to transform the tags and the attributes as described.
The transformed lines should be output to the console. The output should look like the following:

13 Four score and seven years ago our

fathers brought forth on this continent a new nation, conceived

in liberty, and dedicated to the proposition that all men are

created equal.

14 Now we are engaged in a great civil
war, testing whether that nation, or any nation, so conceived

and so dedicated, can long endure.

15 We are met on a great battle-field of
that war.

16 We have come to dedicate a portion of
that field, as a final resting place for those who here gave

their lives that that nation might live.

17 It is altogether fitting and proper
that we should do this.

21 But, in a larger sense, we can not

dedicate, we can not consecrate, we can not hallow this

ground.

…

One approach to the problem could be to break the algorithm into three steps.

1. Break the line into three parts: the start tag, the content, and the end tag.

2. Replace the current tags with a new tag.

3. Replace the attribute value with a new attribute value.

Then return the newly formatted line.

The method signatures to replace the tag and attributes might look like this:

public String replaceTag(String tag, String targetTag,

String replaceTag){ }

public String replaceAttribute(String tag, String attribute,

String value){

Tasks

Open the StringsPractice03 project and make the following changes. Please note that the

code to read a file has been supplied for you.

1. Edit the SearchReplace.java file.

2. Create a Pattern object to match the entire line.

Pattern pattern1 = Pattern.compile("(<" + targetTag +

".*?>)(.*?)(</" + targetTag + ".*?>)");

3. As you loop through the file, do the following:

 Create a Matcher to match the current line.

Matcher m = pattern1.matcher(line);

 Execute the find() method to find a match. If there is a match, replace the start and

end tags. Replace the attribute

if (m.find()) {

String newStart = replaceTag(m.group(1), targetTag,

replaceTag);

newStart = replaceAttribute(newStart, attribute, value);

String newEnd = replaceTag(m.group(3), targetTag, replaceTag);

String newLine = newStart + m.group(2) + newEnd;

System.out.printf("%3d %s\n", c, newLine);

}

4. Create a method that will replace the contents of any tag.

public String replaceTag(String tag, String targetTag, String

replaceTag){

Pattern p = Pattern.compile(targetTag); // targetTag is

regex

Matcher m = p.matcher(tag); // tag is text to replace

if (m.find()){

return m.replaceFirst(replaceTag); // swap target with

replace

}

return targetTag;

}

5. Create a method that will replace a tag’s attribute.

public String replaceAttribute(String tag, String attribute,

String value){

Pattern p = Pattern.compile(attribute + "=" + "\".*?\"");

Matcher m = p.matcher(tag); // tag is text to replace

if (m.find()){

return m.replaceFirst(attribute + "=" + "\"" + value +

"\"");

}

return tag;

}

6. Run the SearchReplace.java file and produce the output shown in the “Summary”

section of this practice.

