|A-64 Application Instruction Set Architecture Guide

Revision 1.0

intd AT

IA-64 Application ISA Guide 1.0

THIS DOCUMENT IS PROVIDED “AS I1S” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WAR-
RANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel/Hewlett-Packard products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel/Hewlett-Packard's Terms and Conditions of Sale for such products, Intel/Hewlett-Packard assumes no liability what-
soever, and Intel/Hewlett-Packard disclaims any express or implied warranty, relating to sale and/or use of Intel/Hewlett-
Packard products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringe-
ment of any patent, copyright or other intellectual property right. Intel/Hewlett-Packard products are not intended for use
in medical, life saving, or life sustaining applications.

Intel/Hewlett-Packard may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel/Hewlett-Packard reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

IA-64 processors may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

Copyright © Intel Corporation / Hewlett-Packard Company, 1999

*Third-party brands and names are the property of their respective owners.

HP/Intel

IA-64 Application ISA Guide 1.0

Table of Contents

1 About thelA-64 Application ISA Guide 1-1
11 Overview of |A-64 Application Instruction Set Architecture (ISA) Guide. 1-1
12 Terminology. . . . o o o o e 1-1

2 Introduction tothelA-64 Processor Architecture 2-1
21 1A-64 Operating Environments. e 2-1
2.2 Ingtruction Set Transition Model Overview. o 2-2
23 PA-RISC Compatibility. 2-2
24 JA-B41nstruction SEL Features e 2-2
25 InstructionLevel Parallelism 2-3
2.6 Compiler to Processor Communication. 2-3
27 SPECULELiON e e 2-3

27.1 Control Speculation 2-3

272 DaaSpeculation. 2-4
28 Predication. e 2-4
29 Register Stack L e e 2-5
210 Branching e e e 2-5
211 Register ROtation e e 2-5
212 Floating-point Architecture e e 2-5
213 MuUltimediaSupport. e e e e e e 2-6

3 TA-B4Execution Environment. e e 31

3.1 Application Register State. L e e e 31
311 ReservedandIgnored Registers. e e e 31
312 General REQISLEIS e e e 33
3.1.3 Floating-Point Registers. e 33
314 Predicate RegIStErS e e 33
315 BranChRegisters. e e e 33
316 InstructionPointer. 3-3
317 CurrentFrameMarker. 3-4
318 ApplicationRegisters e e e 34
3.1.9 Performance Monitor DataRegisters(PMD) 3-8
3110 UserMask (UM). o e e 3-8
3.1.11 Processor Identification Registers. 3-8
32 MEMOIY . . o o o 3-10
321 Application Memory AddressingModel oo o 3-10
322 AddressableUnitsand Alignment. 3-10
323 ByteOrdering o e e 3-10
3.3 Ingtruction Encoding OVErvIiew o o oo i 311
34 INStruction SEqUENCING o v o o o e e e e e e e 312
4 1A-64 Application ProgrammingModel e 4-1
41 Register Stack e e 4-1
411 Register Stack Operation e e e e e 4-1
4.1.2 Register Stack INSLrUCtions L e e e e 4-3
4.2 Integer Computation INStruCtions L L e 4-3
421 ArithmeticInstructions L 4-3
422 Logica InStructions e e 4-4
423 32-BitAddressesandIntegers. 4-4
424 BitFeldand ShiftInstructions L 4-4
425 LargeConstantS. e e e 4-5
4.3 Comparelnstructionsand Predication 4-5
431 Predication. e e e 4-6
432 ComparelnstruCtions o o e e e 4-6
433 CompareTYPES . . . o o e e 4-6
434 Predicate Register Transfers. L oL 4-8
44 Memory ACCESSINSITUCLIONS o e e e e e e 4-8

HP/Intel Table of Contents ii

IA-64 Application ISA Guide 1.0

441 Load INStrUCtionS. o o e 4-9

442 Storelnstructions. 4-9

443 SemaphorelInstructions e e 4-10

4.4.4 Control Speculation e e e 4-10

445 DaaSpeculation. e e e e e 4-12

446 Memory Hierarchy Control and Consistency i i i 4-16

447 Memory AccessOrdering o e e 4-18

45 BranchInstructions. e e e 4-19
451 Modulo-Scheduled Loop Support 4-20

45.2 BranchPredictionHints e 4-22

4.6 Multimedialnstructions L e e e 4-23
4.6.1 Parallel Arithmetic. o e 4-23

46.2 Pardlel Shifts. 4-24

4.6.3 DaaArrangement L e e e e 4-24

47 Register FileTransfers. e e e e 4-24
4.8 Character Stringsand Population Count. e 4-25
481 Character StriNgS. o 4-25

482 PopulaionCount. e 4-26

5 1A-64 Floating-point ProgrammingModel 51
51 DataTypesand FOrmatS. o o 51
511 Real TYPES . . o o o e 51

512 Floating-point Register Format 51

5.1.3 Representation of Valuesin Floating-point Registers 5-2

5.2 Floating-point StalusSRegister 5-4
53 Floating-point INStructions. e 5-6
531 Memory AccessInstructions. e e 5-6

5.3.2 Floating-Point Register to/from General Register Transfer Instructions 5-11

5.3.3 Arithmetic INStructions. e e 5-12

534 Non-Arithmetic Instructions e e 5-13

5.35 Floating-point Status Register (FPSR) Status Field Instructions 5-14

5.3.6 Integer Multiply and Add Instructions. 5-14

5.4 Additional IEEE Considerations. e e e e e 5-15
5.4.1 Definition of SNaNs, QNaNs, and Propagationof NaNs 5-15

5.4.2 |EEE Standard Mandated Operations Deferred to Software. 5-15

54.3 AdditionsbeyondthelEEE Standard 5-15

6 IA-64Instruction Reference 6-1
6.1 InstructionPage Conventions 6-1
6.2 InStruction DEsCriptions 6-2
A Instruction Sequencing Considerations e A-1
AL RAW Ordering EXCeptions o e e A-2
A2 WAW Ordering EXCEPLIONS. o e A-3
A3 WAROrdering EXCeptions e A-3
B IA-64 Pseudo-CodeFUNnctions B-1
C TA-B4Instruction Formats o e e C-1
C.l Format SUMMAIY o o e o e e e e e e e e e e e e C-2
C.2 A-UnitInstruction Encodings. o 0 i i e e e e e C-8
C.21 Integer ALU o e e C-8

C.22 Integer COMPAre o e e e e e e e e e e C-10

C23 Multimedia. e C-13

C3 I-UnitInstruction Encodings o oo e e e e e C-16
C.3.1 Multimediaand Variable Shifts C-16

C.3.2 Integer Shifts. C-20

C33 TestBit. o e C-22

C.34 Miscdlaneous|-UnitInstructions e C-23

C35 GRIBRMOVES o e e e e C-24

C.3.6 GR/Predicate/IPMOVES e e C-24

C37 GR/ARMoves(I-Unit). C-25

iv Table of Contents HP/Intel

IA-64 Application ISA Guide 1.0

C.3.8 Sign/Zero Extend/ComputeZerolIndex. e C-25
C.4 M-UnitIngtructionEncodings e C-26
CA1l Loadsand StOreS. o v v i e e e e e e e e C-26
C.4.2 LinePrefetch C-38
C43 Semaphores e e C-39
Ch4d Set/GetFR. e C-39
C.45 Speculationand AdvancedLoadChecks o C-40
C.4.6 Cache/Synchronization/RSE/ALAT. e e C-41
CA47 GR/ARMoves(M-Unit) C-42
C.48 MiscelaneousM-UnitInstructions oo o C-42
C49 Memory Management. o i e e e e e e C-43
C5 B-Unitinstruction Encodings e C-45
C5.1 Branches. C-45
Ch2 NOP . .t e C-48
C.5.3 MiscellaneousB-UnitInstructions L C-49
C.6 F-UnitInstruction Encodings e e C-49
C.6.1 Arithmetic. e e C-51
C.6.2 Pardld Floating-point Select e C-52
C.6.3 Compareand Classify e C-52
C.6.4 Approximation. e e C-53
C.6.5 Minimum/Maximum and Parallel Compare. C-54
C.6.6 MergeandLogical. e e C-54
C.B.7 CONVEISION. . . o o o o e e e e e e e e e e e e e e e C-55
C.6.8 StatusField Manipulation. C-55
C.6.9 MiscellaneousF-Unit Instructions C-56
C.7 X-UnitInstruction Encodings o o C-56
C.7.1 Miscellaneous X-UnitInstructions e e C-56
C.7.2 MovelLongImmediategy C-57
C.8 Immediate Formation. C-57

HP/Intel

Table of Contents v

IA-64 Application ISA Guide 1.0

List of Figures

Figure 3-1. Application Register Model 32
Figure 3-2. FrameMarker Format e 34
Figure 3-3. RSCFOrmMat o e 3-6
Figure 3-4. BSP Register Format. 3-6
Figure 3-5. BSPSTORE Register Format e 3-6
Figure 3-6. RNAT Register Format e 3-6
Figure 3-7. PESFOrmat e 3-7
Figure 3-8. Epilog Count Register Format. o e e 3-8
Figure 3-9. User Mask Format 3-8
Figure3-10. CPUID RegistersOand 1 — Vendor Information
Figure 3-11. CPUID Register 2 — Processor Serial Number ce.e..39
Figure 3-12. CPUID Register 3 — Version Information . e e e e s 399
Figure 3-13. CPUID Register 4 — General Features/Capability B|ts G L
Figure 3-14. Little-endian Loads e e 3-10
Figure 3-15. Big-endian Loads e e e e 3-11
Figure 3-16. Bundle Format. e e e 3-11
Figure 4-1. Register Stack Behavior on Procedure Calland Return.42
Figure 4-2. Data Speculation Recovery Usingld.c, 4-13
Figure 4-3. Data Speculation Recovery Usingchk.a. 4-14
Figure 4-4. Memory Hierarchy. e 4-16
Figure 4-5. Allocation Paths Supported in the Memory Hierarchy 4-17
Figure 5-1. Floating-point Register Format i ... b2
Figure 5-2. Floating-point Status Register Format. e e 5-4
Figure 5-3. Floating-point Status Field Format e e . 54
Figure 5-4. Memory to Floating-point Register Data Translatlon - Smgle PreC|S|on 5-7. .
Figure 5-5. Memory to Floating-point Register Data Translation — Double Precision 5-8. .
Figure 5-6. Memory to Floating-point Register Data Translation — Double Extended, Integer and Fill
Figure 5-7. Floating-point Register to Memory Data Translation . . 5-10
Figure 5-8. Spill/Fill and Double-Extended (80-bit) Floating-point Memory Formats 1.
Figure 6-1. Add Pointer e e e 6-4
Figure 6-2. Stack Frame e 6-5
Figure 6-3. Operation of br.ctopand br.cexit6-10
Figure 6-4. Operation of br.wtop and brwexit.611
Figure 6-5. Deposit Example. e e e 6-27
Figure 6-6. Extract Example L e e 6-28
Figure 6-7. Floating-point Merge Negative Sign Operation.&....6-49
Figure 6-8. Floating-point Merge Sign Operation C e 6-49
Figure 6-9. Floating-point Merge Sign and Exponent Operat|on 6-49
Figure 6-10. Floating-point Mix Left e 6-52
Figure 6-11. Floating-point Mix Right e 6-52
Figure 6-12. Floating-point Mix Left-Right. e e 6-52
Figure 6-13. Floating-point Pack e 6-63
Figure 6-14. Floating-point Merge Negative Sign Operation. «u...6-73
Figure 6-15. Floating-point Merge Sign Operation Ce 6-73
Figure 6-16. Floating-point Merge Sign and Exponent Operatlon 6-73
Figure 6-17. Floating-point Swap e e e 6-95
Figure 6-18. Floating-point Swap Negate LeftorRight.695
Figure 6-19. Floating-point Sign Extend Left. o, ...697
Figure 6-20. Floating-point Sign Extend Right697
Figure 6-21. Functionof getf.exp L e 6-99
Figure 6-22. Function of getf.sig L e 6-99
Figure 6-23. Mix Example. L e e 6-114
Figure 6-24. Mux1 Operation (8-bitelements)6-127
Figure 6-25. Mux2 Examples (16-bitelements).awa...6-128
Vi List of Figures HP/Intel

IA-64 Application ISA Guide 1.0

Figure 6-26.
Figure 6-27.
Figure 6-28.
Figure 6-29.
Figure 6-30.
Figure 6-31.
Figure 6-32.
Figure 6-33.
Figure 6-34.
Figure 6-35.
Figure 6-36.
Figure 6-37.
Figure 6-38.
Figure 6-39.
Figure 6-40.
Figure 6-41.
Figure 6-42.
Figure 6-43.

Figure C-1.

Pack Operation e 6-132
Parallel Add Examples e 6-134
Parallel Average Example e e 6-137
Parallel Average with Round Away fromZeroExample. 6-138
Parallel Average Subtract Example. 6-140
Parallel Compare Example e 6-142
Paradlel Maximum Example 6-144
Parallel Minimum Example. e 6-145
Parallel Multiply Operation. e 6-146
Paralel Multiply and Shift Right Operation 6-147
Parallel Sum of Absolute DifferenceExample. 6-149
Paralel ShiftLeftExample. e 6-150
Parallel Subtract Example. L e 6-154
Functionof setf.exp. e 6-158
Functionof setf.sig e 6-158
Shift Leftand Add Pointer e 6-162
Shift Right Pair 6-164
Unpack Operation. 6-178
Bundle Format C-1

HP/Intel

List of Figures vii

IA-64 Application ISA Guide 1.0

Table 2-1.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 4-16.
Table4-17.
Table 4-18.
Table 4-19.
Table 4-20.
Table 4-21.
Table 4-22.
Table 4-23.
Table 4-24.
Table 4-25.
Table 4-26.
Table 4-27.
Table 4-28.
Table 4-29.
Table 4-30.
Table 4-31.
Table 4-32.
Table 4-33
Table5-1.
Table5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.

Table 5-10.
Table 5-11.

List of Tables

IA-64 Processor Operating Environments. 2-1
Reserved and Ignored Registersand Fields L 32
Frame Marker Field Description. o o 34
Application RegIStErS 35
RSC Field Description. e 3-6
PESField Description o 3-7
User Mask Field Descriptions o o o e e 3-8
CPUID Register BFields. 39
Relationship Between Instruction Type and ExecutionUnit Type 311
Template Field Encoding and Instruction Slot Mapping 3-12
Architectural Visible State Related tothe Register Stack 4-3
Register Stack Management Instructions L 4-3
Integer Arithmetic Instructions 4-4
Integer Logical INStructions e e e 4-4
32-bit Pointer and 32-bit Integer Instructions L 4-4
Bit Field and Shift Instructions 4-5
Instructionsto GenerateLargeConstants 4-5
Compare Instructions e e e 4-6
Compare Type Function. e 4-7
Compare Outcomewith NaT Sourcelnput 4-7
Instructionsand Compare TypesProvided 4-7
Memory Access INStructions. e e e 4-9
State RelatingtoMemory ACCESS o o i i e e e e e 4-10
State Related to Control Speculation 4-12
Instructions Related to Control Speculation. 4-12
State Relatingto DataSpeculation. e e 4-16
Instructions Relatingto DataSpeculation e 4-16
Locality Hints Specified by Each InstructionClass. 4-17
Memory Hierarchy Control Instructionsand Hint Mechanisms. 4-18
Memory Ordering RUleS. e 4-19
Memory Ordering Instructions. e 4-19
Branch Types o e 4-20
State Relatingto Branching L 4-20
Instructions Relatingto Branching 4-20
Instructionsthat Modify RRBs 4-21
Whether Prediction HintonBranches. 4-22
Sequential PrefetchHintonBranches. 4-22
Predictor Deallocation Hint 4-22
Parallel Arithmetic Instructions e 4-23
Parallel Shift Instructions e 4-24
Parallel Data Arrangement Instructions Lo Lo 4-24
Register File Transfer Instructions. 4-25
String Support INStructions e e 4-26
IEEE Real-Type Properties e e e 51
Floating-point Register Encodings o o i o 5-2
Floating-point Status Register Field Description 5-4
Floating-point Status Register’s Status Field Description 5:4. ..
Floating-point Rounding Control Definitions T -)
Floating-point Computation Model Control Def|n|t|ons 5-5
Floating-point Memory Access Instructions.c... 56
Floating-point Register Transfer Instructions T & S
General Register (Integer) to Floating-point Register Data Translat|on 5:12. .
Floating-point Register to General Register (Integer) Data Translation. 5:12. .

Floating-point Instruction Status Field Specifier Definition.512

Vil List of Tables HP/Intel

IA-64 Application ISA Guide 1.0

Table5-12. Floating-point Arithmetic Instructions 5-12
Table5-13. Floating-point Pseudo-Operations e 5-13
Table5-14. Non-Arithmetic Floating-point Instructions 5-13
Table5-15. FPSR StatusField Instructions e 5-14
Table 5-16. Integer Multiply and Add Instructions e 5-14
Table 6-1. Instruction Page Description e e 6-1
Table 6-2. Instruction Page Font Conventions e e 6-1
Table 6-3. Register FileNotation e e 6-1
Table 6-4. CSyntax Differences e 6-2
Table 6-5. Branch Types e e e 6-8
Table 6-6. BranchWhether Hint 6-11
Table 6-7. Sequential Prefetch Hint e 6-11
Table 6-8. Branch Cache DedllocationHint 6-12
Table 6-9. ALAT Clear Completer. e e e e e e e e e 6-16
Table6-10. CompariSON TYPES . . . v v v o o e e e e e e e e e e e 6-19
Table6-11. 64-bit Comparison Relationsfor Normal andunc Compares. 6-20
Table6-12. 64-bit Comparison Relationsfor Parallel Compares, 6-20
Table6-13. Immediate Rangefor 32-bit Compares. 6-22
Table6-14. Memory Compare and ExchangeSize e 6-24
Table6-15. Compareand Exchange Semaphore TYPeS.« . v o i i i i i e e e e e e 6-24
Table6-16. Result Rangesforczx. o o o 6-26
Table6-17. Specified pc MnemonicValues. 6-30
Table6-18. sfMnemonicValues e 6-30
Table6-19. Hoating-point ClassRelations 6-37
Table6-20. Hoating-point Classes. o i o 6-37
Table6-21. Foating-point CompariSON TYPES o o v v v e e e e e e e e e 6-40
Table6-22. Foating-point Comparison Relations. 6-40
Table6-23. Fetchand Add Semaphore TYPeS. o o i i e e e 6-45
Table6-24. Foating-point Parallel Comparison Results i 6-66
Table6-25. Foating-point Parallel Comparison Relations, 6-66
Table6-26. szCOMPIELErS e 6-101
Table6-27. Load TYPES . . . o o o o e e 6-101
Table6-28. Load Hints. e 6-102
Table6-29. fszCompleters. e 6-105
Table6-30. FPLOad TYPES o o e 6-105
Table6-31. IftypeMnemonicValues 6-110
Table6-32. IfhintMnemonicValues. e e 6-110
Table6-33. Indirect Register FlleMnemonics. oo e 6-122
Table6-34. Mux Permutationsfor 8-bitElements. 6-127
Table6-35. Pack Saturation Limits e e 6-132
Table6-36. Parallel Add Saturation Completers e 6-134
Table6-37. Paralel Add Saturation Limits e 6-134
Table6-38. PCmMp REEtions e e e 6-142
Table6-39. PMPYSHR ShiftOptions. e e 6-147
Table 6-40. Paralel Subtract Saturation Completers 6-154
Table6-41. Parallel Subtract SaturationLimits e 6-154
Table 6-42. SHOreTYPES o e e e 6-166
Table6-43. StoreHints e 6-166
Table6-44. xszMnemonicValues. e 6-171
Table6-45. Test Bit Relationsfor Normal anduncthits, 6-173
Table6-46. Test Bit Relationsfor Parallel thits. 6-173
Table6-47. Test NaT Relationsfor Normal andunctnats 6-175
Table6-48. Test NaT Relationsfor Parallel tnats 6-175
Table6-49. Memory Exchange Size. e e 6-180
Table B-1. Pseudo-Code FUNCLIONS o e B-1
Table C-1. Relationship Between Instruction Type and Execution Unit Type. C-1
Table C-2. Template Field Encoding and Instruction Slot Mapping Cc-2
HP/Intel List of Tables iX

IA-64 Application ISA Guide 1.0

Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table C-8.
Table C-9.

Table C-10.
Table C-11.
Table C-12.
Table C-13.
Table C-14.
Table C-15.
Table C-16.
Table C-17.
Table C-18.
Table C-19.
Table C-20.
Table C-21.
Table C-22.
Table C-23.
Table C-24.
Table C-25.
Table C-26.
Table C-27.
Table C-28.
Table C-29.
Table C-30.
Table C-31.
Table C-32.
Table C-33.
Table C-34.
Table C-35.
Table C-36.
Table C-37.
Table C-38.
Table C-39.
Table C-40.
Table C-41.
Table C-42.
Table C-43.
Table C-44.
Table C-45.
Table C-46.
Table C-47.
Table C-48.
Table C-49.
Table C-50.
Table C-51.
Table C-52.
Table C-53.
Table C-54.
Table C-55.
Table C-56.
Table C-57.
Table C-58.
Table C-59.

Maor Opcode ASSIgNMENTS v v v v e e e e e e e e e e e e e e e e e e C-3
Instruction Format Summary e C-4
Instruction Field Color Key e C-6
Instruction FieldNames e C-7
Specia Instruction Notations e C-7
Integer ALU 2-bit+1-bit Opcode Extensions C-8
Integer ALU 4-bit+2-bit Opcode Extensions C-8
Integer Compare Opcode EXtENSIONS o o e C-10
Integer Compare Immediate Opcode Extensions C-10
MultimediaALU 2-bit+1-bit Opcode Extensions. C-13
MultimediaALU Size 1 4-bit+2-bit Opcode Extensions C-14
MultimediaALU Size 2 4-bit+2-bit Opcode Extensions C-14
MultimediaALU Size 4 4-bit+2-bit Opcode Extensions C-15
Multimediaand Variable Shift 1-bit Opcode Extensions C-16
Multimedia Max/Min/Mix/Pack/Unpack Size 1 2-bit OpcodeExtensions C-16
Multimedia Multiply/Shift/Max/Min/Mix/Pack/Unpack Size 2 2-bit Opcode Extensions C-17
Multimedia Shift/Mix/Pack/Unpack Size 4 2-bit Opcode Extensions C-17
Variable Shift 2-bit Opcode Extensions. C-18
Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions. C-20
Deposit OpCode EXLENSIONS o o o o o e e e C-20
Test Bit Opcode EXIENSIONS o o o o Cc-22
Misc I-Unit 3-bit Opcode Extensions C-23
Misc I-Unit 6-bit Opcode Extensions C-23
Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions. C-26
Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions. C-26
Integer Load/Store OpCOde EXtENSIONS o o v o i e C-26
Integer Load +Reg Opcode EXtensions e C-27
Integer Load/Store +Imm Opcode Extensions. e C-27
Semaphore/Get FR OpCode EXteNSiONS o o o i i e e e e e e C-28
Floating-point Load/Store/Lfetch Opcode Extensions C-28
Floating-point Load/Lfetch +Reg Opcode Extensions C-29
Floating-point Load/Store/Lfetch +Imm Opcode Extensions. C-29
Floating-point Load Pair/Set FR Opcode Extensions C-30
Floating-point Load Pair +Imm Opcode Extensions C-30
Load Hint Completer C-30
StoreHint Completer C-30
LinePrefetchHint Completer C-38
Opcode 0 Memory Management 3-bit Opcode Extensions C-43
Opcode 0 Memory Management 4-bit+2-bit Opcode Extensions. C-44
Opcode 1 Memory Management 3-bit Opcode Extensions C-44
Opcode 1 Memory Management 6-bit Opcode Extensions C-44
IP-Relative Branch Types o o e C-45
Indirect/Miscellaneous Branch Opcode Extensions., C-46
Indirect Branch Types e C-46
Indirect Return BranCh TYpeS o o o e e C-46
Sequential Prefetch Hint Completer. e C-46
Branch Whether Hint Completer e C-47
Indirect Call Whether Hint Completer. e C-47
Branch Cache Dedllocation Hint Completer., C-47
Indirect Predict/Nop Opcode EXtensions v v v i i i e e e e s e C-48
Miscellaneous Floating-point 1-bit Opcode Extensions. C-49
Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions C-50
Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions C-50
Reciprocal Approximation 1-bit Opcode Extensions, C-50
Floating-point Status Field Completer. e C-51
Floating-point Arithmetic 1-bit Opcode Extensions. C-51
Fixed-point Multiply Add and Select Opcode Extensions. C-51

X List of Tables HP/Intel

IA-64 Application ISA Guide 1.0

Table C-60. Floating-point Compare OpCOde EXtENSIONS v v v v v o e e e e e e e e e e e e e C-52
Table C-61. Floating-point Class 1-bit Opcode EXteNsions o v i i i it e e e e e e e C-52
TableC-62. Misc X-Unit 3-bit Opcode Extensions i, C-56
TableC-63. Misc X-Unit 6-bit Opcode Extensions C-56
TableC-64. Movelong 1-bit Opcode EXtensions. i e e C-57
TableC-65. Immediate Formation. L e e e C-57

HP/Intel List of Tables Xi

IA-64 Application ISA Guide 1.0

Xii List of Tables HP/Intel

IA-64 Application ISA Guide 1.0

1 About the I1A-64 Application ISA Guide

The Intel Architecture — 64-bit (IA-64) is a uniqgue combination of innovative features, such as explicit parallelism, predi-
cation, speculation and much more. The architecture is designed to be highly scalable to fill the ever increasing perfor-
mance requirements of various server and workstation market segments. The 1A-64 architecture features a revolutionary
64-bit instruction set architecture (ISA) which applies a new processor architecture technology called EPIC, or Explicitly
Parallel Instruction Computing. A key feature of the 1A-64 architecture is I1A-32 instruction set compatibility.

This document provides a comprehensive description of IA-64 architecture exposed to application software. This includes
information on application level resources (registers, etc), application environment, detailed application (non-privileged)
instruction description, format and encoding.

1.1 Overview of 1A-64 Application Instruction Set Architecture (ISA)
Guide

Chapter 1, “About the IA-64 Application ISA Guide”. Gives an overview of this guide.

Chapter 2, “Introduction to the IA-64 Processor Architecture”. Provides an overview of key features of IA-64 architec-
ture.

Chapter 3, “IA-64 Execution Environment”. Describes the IA-64 application architectural state (registers, memory, etc).

Chapter 4, “IA-64 Application Programming Model”. Describes the 1A-64 architecture from the perspective of the appli-
cation programmer. 1A-64 instructions are grouped into related functions and an overview of their behavior is given.

Chapter 5, “IA-64 Floating-point Programming Model”. This chapter provides a description of I1A-64 floating-point regis-
ters, data types and formats and floating-point instructions.

Chapter 6, “IA-64 Instruction Reference”. Provides detailed description of IA-64 application instructions, operation, and
instruction format.

Appendix A, "Instruction Sequencing Considerations”. Describes the details of instruction sequencing in 1A-64 architec-
ture.

Appendix B, "IA-64 Pseudo-Code Functions". Describes pseudo-code functions used in Chapter 6, “IA-64 Instruction
Reference”.

Appendix C, "IA-64 Instruction Formats". Describes the encoding and instruction format of instructions covered in Chap-
ter 6, “IA-64 Instruction Reference”.

1.2 Terminology

The following definitions are for terms related to the 1A-64 architecture and will be used in the rest of this document:

* Instruction Set Architecture (ISA) — Defines application and system level resources. These resources include
instructions and registers.

* |A-64 Architecture — 1A-64 defines the architectural extensions defined in the new ISA including 64-bit instruction
capabilities, new performance-enhancing features and support for IA-32 instruction set.

» |A-32 Architecture — The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture Software Devel-
oper’s Manual

* |A-64 Processor —An Intel 64-bit processor that implements both the 1A-64 and the |A-32 instruction sets.

HP/Intel About the IA-64 Application ISA Guide 1-1

IA-64 Application ISA Guide 1.0

» |A-64 System Environment — |A-64 operating system privileged environment that supports the execution of both
|A-64 and 1A-32 code.

| A-32 System Environment — Operating system privileged environment and resources as defined by the Intel Archi-
tecture Software Developer’'s Manu&lesources include virtual paging, control registers, debugging, performance
monitoring, machine checks, and the set of privileged instructions.

1-2 About the IA-64 Application ISA Guide HP/Intel

IA-64 Application ISA Guide 1.0

2 Introduction to the I1A-64 Processor Architecture

The 1A-64 architecture was designed to overcome the performance limitations of traditional architectures and provide
maximum headroom for the future. To achieve this, |A-64 was designed with an array of innovative features to extract
greater instruction level paralelism including: speculation, predication, large register files, a register stack, advanced
branch architecture, and many others. 64-bit memory addressability was added to meet the increasing large memory foot-
print requirements of data warehousing, E-business, and other high performance server and workstation applications.

The |A-64 architecture also provides binary compatibility with the IA-32 instruction set. |A-64 processors can run 1A-32
applications on an 1A-64 operating system that supports execution of 1A-32 applications. 1A-64 processors can run |A-32
application binaries on A-32 legacy operating systems assuming the platform and firmware support exists in the system.
The 1A-64 architecture also provides the capability to support mixed |A-32 and | A-64 code execution.

The 1A-64 architecture was designed with the understanding that compatibility with 1A-32 and PA-RISC is akey require-
ment. Significant effort has been applied in the architectura definition to maximize 1A-64 scaability, performance and
architectural longevity. As aresult, |A-64 has been designed with an array of performance optimization techniques that
extend the architecture to 64-bits and enable higher performance. These features include speculation, predication, large
register files, a register stack, and an advanced branch architecture and are designed to extract greater instruction level
parallelism.

2.1 IA-64 Operating Environments

The | A-64 architecture supports two operating system environments:
» IA-32 System Environment: supports IA-32 32-bit operating systems, and
* |A-64 System Environment: supports 1A-64 operating systems.

The architectural model also supports a mixture of IA-32 and IA-64 applications within a single IA-64 operating system.
Table 2-1 defines the major operating environments supported on IA-64 processors.

Table 2-1. IA-64 Processor Operating Environments

System Application
Environment Environment Usage
IA-32 IA-32 Instruction | IA-32 Protected Mode, Real Mode and Virtual 8086
Set Mode application and operating system environment.
Compatible with IA-32 Pentiuffy Pentium Pro and Pen-
tium |1 processors.
|A-64 |A-32 Protected | A-32 Protected Mode applications in the | A-64 system
Mode environment, if supported by OS.

IA-32 Real Mode | 1A-32 Rea Mode applicationsin the |1A-64 system envi-
ronment, if supported by OS.

IA-32 Virtual IA-32 Virtual 86 Mode applicationsin the |A-64 system
Mode environment, if supported by OS.

IA-64 Instruction | 1A-64 Applications on |A-64 operating systems.

Set

HP/Intel Introduction to the IA-64 Processor Architecture 2-1

IA-64 Application ISA Guide 1.0

2.2 Instruction Set Transition Model Overview

Within the IA-64 System Environment, the processor can execute either I1A-32 or |A-64 instructions at any time. Three
special instructions and interruptions are defined to transition the processor between the |A-32 and the |A-64 instruction
Set.

« j npe (IA-32 instruction) Jump to an IA-64 target instruction, and change the instruction set to 1A-64.
 br.ia (IA-64 instruction) I1A-64 branch to an IA-32 target instruction, and change the instruction set to 1A-32.
* Interruptiongransition the processor to the I1A-64 instruction set for handling all interruption conditions.

e rfi (IA-64 instruction)‘return from interruption” is defined to return to an IA-32 or IA-64 instruction.

The j npe andbr . i a instructions provide a low overhead mechanism to transfer control between the instruction sets.
These instructions are typically incorporated into “thunks” or “stubs” that implement the required call linkage and calling
conventions to call dynamic or statically linked libraries.

2.3 PA-RISC Compatibility

Binary compatibility between PA-RISC and IA-64 is handled through dynamic object code translation. This process is
very efficient because there is such a high degree of correspondence between PA-RISC and IA-64 instructions. HP’s per-
formance studies show that on average the dynamic translator only spends 1-2% of its time in translation with 98-99% of
the time spent executing native code. The dynamic translator actually performs optimizations on the translated code to
take advantage of 1A-64’s wider instructions, and performance features such as predication, speculation and large register
sets. In addition, if an application has been aggressively optimized for PA-RISC, some of the benefit of the optimizations
will carry over to 1A-64. In fact, an aggressively optimized PA-RISC application may actually perform faster on I1A-64
using the dynamic translator than the same application recompiled at a low level of optimization on an I1A-64 compiler. Of
course, the best performance will result from a high level of optimization using a good native compiler.

The dynamic translator is designed to run all non-kernel intrusive code, handling both 64-bit and 32-bit instructions. This
means operating systems and device drivers typically would not be supported, but all other applications will run. HP’s
dynamic translator will be bundled with all versions of HP-UX sold for 1A-64 systems. When HP-UX encounters code
compiled for PA-RISC, it will automatically and transparently invoke the dynamic translator which will allow the code to
run on IA-64 without any intervention. Correctness of the dynamic translator has been verified with the same testing reg-
imen used to validate PA-RISC processors.

2.4 IA-64 Instruction Set Features

IA-64 incorporates architectural features which enable high sustained performance and remove barriers to further perfor-
mance increases. The IA-64 architecture is based on the following principles:

 Explicit parallelism
— Mechanisms for synergy between the compiler and the processor
— Massive resources to take advantage of instruction level parallelism
— 128 Integer and Floating point registers, 64 1-bit predicate registers, 8 branch registers
— Support for many execution units and memory ports
 Features that enhance instruction level parallelism
— Speculation (which minimizes memory latency impact).
— Predication (which removes branches).
— Software pipelining of loops with low overhead

— Branch prediction to minimize the cost of branches

2-2 Introduction to the IA-64 Processor Architecture HP/Intel

IA-64 Application ISA Guide 1.0

» Focussed enhancements for improved software performance
— Special support for software modularity
— High performance floating-point architecture
— Specific multimedia instructions

The following sections highlight these important features of 1A-64.

2.5 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the same time. The |1A-64 architecture
allows issuing of independent instructions in bundles (three instructions per bundle) for parallel execution and can issue
multiple bundles per clock. Supported by a large number of parallel resources such as large register files and multiple exe-
cution units, the IA-64 architecture enables the compiler to manage work in progress and schedule simultaneous threads
of computation.

The IA-64 architecture incorporates mechanisms to take advantage of ILP. Compilers for traditional architectures are
often limited in their ability to utilize speculative information because it cannot always be guaranteed to be correct. The
IA-64 architecture enables the compiler to exploit speculative information without sacrificing the correct execution of an
application (see “Speculation” on page 2-3). In traditional architectures, procedure calls limit performance since registers
need be spilled and filled. IA-64 enables procedures to communicate register usage to the processor. This allows the pro-
cessor to schedule procedure register operations even when there is a low degree of ILP. See “Register Stack” on page 2-5

2.6 Compiler to Processor Communication

The IA-64 architecture provides mechanisms, such as instruction templates, branch hints, and cache hints to enable the
compiler to communicate compile-time information to the processor. In addition, 1A-64 allows compiled code to manage
the processor hardware using run-time information. These communication mechanisms are vital in minimizing the perfor-
mance penalties associated with branches and cache misses.

Every memory load and store in IA-64 has a 2-bit cache hint field in which the compiler encodes its prediction of the spa-
tial and/or temporal locality of the memory area being accessed. An 1A-64 processor can use this information to determine
the placement of cache lines in the cache hierarchy. This leads to better utilization of the hierarchy since the relative cost
of cache misses continues to grow.

2.7 Speculation

There are two types of speculation: control and data. In both control and data speculation, the compiler exposes ILP by
issuing an operation early and removing the latency of this operation from the critical path. The compiler will issue an
operation speculatively if it is reasonably sure that the speculation will be beneficial. To be beneficial two conditions
should hold: it must be statistically frequent enough that the probability it will require recovery is small, and issuing the
operation early should expose further ILP-enhancing optimization. Speculation is one of the primary mechanisms for the
compiler to exploit statistical ILP by overlapping, and therefore tolerating, the latencies of operations.

2.7.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it. Consider the code sequence below:

if (a>b) |oad(ld_addril,targetl)
el se | oad(ld_addr2, target?2)

If the operation oad(| d_addr 1, t ar get 1) were to be performed prior to the determinatiofasfb) , then the operation

would be control speculative with respect to the controlling conditesb) . Under normal execution, the operation

| oad(l d_addr1, target1l) may or may not execute. If the new control speculative load causes an exception then the
exception should only be serviced i#>b) is true. When the compiler uses control speculation it leaves a check operation

at the original location. The check verifies whether an exception has occurred and if so it branches to recovery code. The
code sequence above now translates into:

HP/Intel Introduction to the IA-64 Processor Architecture 2-3

IA-64 Application ISA Guide 1.0

/* off critical path */
sl oad(l d_addr1,targetl)
sl oad(| d_addr 2, t ar get 2)

/* other operations including uses of targetl/target2 */
if (a>b) scheck(targetl, recovery_addrl)
el se scheck(target2, recovery_addr2)

2.7.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and that may potentially alias with it.
Data speculative loads are also referred to as “advanced loads”. Consider the code sequence below:

st ore(st _addr, dat a)
| oad(| d_addr, target)
use(target)

The process of determining at compile time the relationship between memory addresses is called disambiguation. In the
example above, Ifd_addr andst _addr cannot be disambiguated, and if the load were to be performed prior to the store,
then the load would be data speculative with respect to the store. If memory addresses overlap during execution, a data-
speculative load issued before the store might return a different value than a regular load issued after the store. Therefore
analogous to control speculation, when the compiler data speculates a load, it leaves a check instruction at the original
location of the load. The check verifies whether an overlap has occurred and if so it branches to recovery code. The code
sequence above now translates into:

/* off critical path */
al oad(| d_addr, target)

/* other operations including uses of target */
st ore(st _addr, dat a)

acheck(target, recovery_addr)

use(target)

2.8 Predication

Predication is the conditional execution of instructions. Conditional execution is implemented through branches in tradi-
tional architectures. IA-64 implements this function through the use of predicated instructions. Predication removes
branches used for conditional execution resulting in larger basic blocks and the elimination of associated mispredict pen-
alties.

To illustrate, an unpredicated instruction
rl=r2+r3

when predicated, would be of the form
if (p5) rl1=r2+7r3

In this exampl®5 is the controlling predicate that decides whether or not the instruction executes and updates state. If the
predicate value is true, then the instruction updates state. Otherwise it generally behavemgik®radicates are
assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a control dependence to a data
dependence. Consider the original code:
if (ab) c =c +1
elsed=d* e +f

The branch ata>b) can be avoided by converting the code above to the predicated code:

pT, pF = conpare(a>b)
if (pT) c=c + 1
if (pF) d=d* e + f

2-4 Introduction to the IA-64 Processor Architecture HP/Intel

IA-64 Application ISA Guide 1.0

The predicate pT is set to 1 if the condition evaluatesto true, and to O if the condition evaluates to false. The predicate pF
is the complement of pT. The control dependence of theinstructionsc = ¢ + 1andd = d * e + f onthebranch with
the condition (a>b) isnow converted into a data dependence on conpar e(a>b) through predicates pT and pF (the branch
is eliminated). An added benefit is that the compiler can schedule the instructions under pT and pF to execute in parallel.
It is also worth noting that there are several different types of compare instructions that write predicates in different man-
ners including unconditional compares and parallel compares.

2.9 Register Stack

| A-64 avoids the unnecessary spilling and filling of registers at procedure call and return interfaces through compiler-con-

trolled renaming. At acall site, anew frame of registersis available to the called procedure without the need for register

spill and fill (either by the caller or by the callee). Register access occurs by renaming the virtual register identifiersin the

instructions through a base register into the physical registers. The callee can freely use available registers without having

to spill and eventually restore the caller’s registers. The callee execudesaninstruction specifying the number of
registers it expects to use in order to ensure that enough registers are available. If sufficient registers are not available
(stack overflow), thal | oc stalls the processor and spills the caller’s registers until the requested number of registers are
available.

At the return site, the base register is restored to the value that the caller was using to access registers prior to the call.
Some of the caller’s registers may have been spilled by the hardware and not yet restored. In this case (stack underflow),
the return stalls the processor until the processor has restored an appropriate number of the caller’s registers. The hard-
ware can exploit the explicit register stack frame information to spill and fill registers from the register stack to memory at
the best opportunity (independent of the calling and called procedures).

2.10 Branching

In addition to removing branches through the use of predication, several mechanisms are provided to decrease the branch
misprediction rate and the cost of the remaining mispredicted branches. These mechanisms provide ways for the compiler
to communicate information about branch conditions to the processor.

For indirect branches, a branch register is used to hold the target address.

Special loop-closing branches are provided to accelerate counted loops and modulo-scheduled loops. These branches pro
vide information that allows for perfect prediction of loop termination, thereby eliminating costly mispredict penalties and
a reduction of the loop overhead.

2.11 Register Rotation

Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit since the next iteration of the loop
starts before the previous iteration has finished. The iteration is split into stages similar to the stages of an execution pip
line. Modulo scheduling allows the compiler to execute loop iterations in parallel rather than sequentially. The concurrent
execution of multiple iterations traditionally requires unrolling of the loop and software renaming of registers. 1A-64
allows the renaming of registers which provide every iteration with its own set of registers, avoiding the need for unroll-
ing. This kind of register renaming is called register rotation. The result is that software pipelining can be applied to a
much wider variety of loops - both small as well as large with significantly reduced overhead.

2.12 Floating-point Architecture

IA-64 defines a floating-point architecture with full IEEE support for the single, double, and double-extended (80-bit)
data types. Some extensions, such as a fused multiply and add operation, minimum and maximum functions, and a regis-
ter file format with a larger range than the double-extended memory format, are also included. 128 floating-point registers
are defined. Of these, 96 registers are rotating (not stacked) and can be used to modulo schedule loops compactly. Multi-
ple floating-point status registers are provided for speculation.

IA-64 has parallel FP instructions which operate on two 32-bit single precision numbers, resident in a single floating-point
register, in parallel and independently. These instructions significantly increase the single precision floating-point compu-
tation throughput and enhance the performance of 3D intensive applications and games.

HP/Intel Introduction to the IA-64 Processor Architecture 2-5

IA-64 Application ISA Guide 1.0

2.13 Multimedia Support

| A-64 has multimediainstructions which treat the general registers as concatenations of eight 8-bit, four 16-bit, or two 32-

bit elements. These instructions operate on each element in parallel, independent of the others. 1A-64 multimediainstruc-

tions are semantically compatible with HP’s MAX-2 multimedia technology and Intel's MMX technology instructions
and Streaming SIMD Extensions instruction technology.

2-6 Introduction to the IA-64 Processor Architecture HP/Intel

IA-64 Application ISA Guide 1.0

3 IA-64 Execution Environment

The architectural state consists of registers and memory. The results of instruction execution become architecturaly visi-
ble according to a set of execution sequencing rules. This chapter describes the 1A-64 application architectural state and
the rules for execution sequencing.

3.1 Application Register State

Thefollowingisalist of the registers available to application programs (see Figure 3-1):

» General Registers (GRs) — General purpose 64-bit register file, GRO — GR127. I1A-32 integer and segment registers
are contained in GR8 - GR31 when executing IA-32 instructions.

 Floating-Point Registers (FRs) — Floating-point register file, FRO — FR127. IA-32 floating-point and multi-media
registers are contained in FR8 - FR31 when executing IA-32 instructions.

» Predicate Registers (PRs) — Single-bit registers, used in 1A-64 predication and branching, PRO — PR63.
» Branch Registers (BRs) — Registers used in IA-64 branching, BRO — BR7.

* Instruction Pointer (IP) — Register which holds the bundle address of the currently executing 1A-64 instruction, or
byte address of the currently executing IA-32 instruction.

e Current Frame Marker (CFM) — State that describes the current general register stack frame, and FR/PR rotation.
» Application Registers (ARs) — A collection of special-purpose 1A-64 and 1A-32 application registers.
 Performance Monitor Data Registers (PM D) — Data registers for performance monitor hardware.

» User Mask (UM) — A set of single-bit values used for alignment traps, performance monitors, and to monitor float-
ing-point register usage.

» Processor |dentifiers (CPUID) — Registers that describe processor implementation-dependent 1A-64 features.

IA-32 application register state is entirely contained within the larger IA-64 application register set and is accessible by
IA-64 instructions. IA-32 instructions cannot access the IA-64 specific register set.

3.1.1 Reserved and Ignored Registers

Registers which are not defined are either reserved or ignored. An accessawvead register raises an lllegal Opera-

tion fault. A read of amgnored register returns zero. Software may write any value to an ignored register and the hard-
ware will ignore the value written. In variable-sized register sets, registers which are unimplemented in a particular
processor are also reserved registers. An access to one of these unimplemented registers causes a Reserved Register/Fie
fault.

Within defined registers, fields which are not defined are either reserved or ignoredsaroed fields, hardware will
always return a zero on a read. Software must always write zeros to these fields. Any attempt to write a non-zero value
into a reserved field will raise a Reserved register/field fault. Reserved fields may have a possible future use.

Forignored fields, hardware will return a O on a read, unless noted otherwise. Software may write any value to these
fields since the hardware will ignore any value written. Except where noted otherwise some 1A-32 ignored fields may
have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.

HP/Intel |A-64 Execution Environment 3-1

IA-64 Application ISA Guide 1.0

Table 3-1. Reserved and Ignored Registers and Fields

Type

Read

Write

Reserved register

lllegal operation fault

lllegal operation fault

Ignored register

0

value written is discarded

Reserved field

0

write of non-zero causes Reserved Reg/Field fault

Ignored field

0 (unless noted otherwise)

value written is discarded

For defined fields in registers, values which are not defined are reserved. Software must always write defined values to
these fields. Any attempt to write areserved value will raise a Reserved Register/Field fault. Certain registers are read-
only registers. A write to aread-only register raises an lllegal Operation fault.

When fields are marked asreserved, it is essential for compatibility with future processors that software treat these fields
as having afuture, though unknown effect. Software should follow these guidelines when dealing with reserved fields:

» Do not depend on the state of any reserved fields. Mask all reserved fields before testing.

» Do not depend on the states of any reserved fields when storing to memory or a register.

» Do not depend on the ability to retain information written into reserved or ignored fields.

» Where possible reload reserved or ignored fields with values previously returned from the same register, otherwise

load zeros.

General registers

63 0
dro 0

ara
dre

gray
ar32

griog

APPLICATION REGISTER SET _— .
Application registers
Floating-point registers Predicates Branch registers 63 0
nats 81 0 63 0 arg KRO
q fro +0.0 Pro i bro
1 n +1.0 prof[| brg [ar KR7
o pro | by [
— A6 RSC
= pris[] bry a7 BSP
- fra Prig] e ar;g| BSPSTORE
i fra Irggtructlon Poi ntoer are RNAT
Current Fl i Mark a1 FCR
ore urregr; rame gr er aroy EFLAG
= CFM g CSD
g SSD
US(;I’ Maﬁ(ary7 CFLG
- as| PSR
- frz . &y FIR
= Performance Monitor 5, FDR
Processor Identifiers Dataregisters
63 0 63 0
A o
cpuidy pmdy arsg UNAT
cpuidy, [| pmdy ary ITC
gy PFS
Aes LC
A EC
a 12{

Figure 3-1. Application Register Model

3-2

IA-64 Execution Environment

HP/Intel

IA-64 Application ISA Guide 1.0

3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for al integer and integer multimedia computation.
They are numbered GRO through GR127, and are available to all programs at al privilege levels. Each general register
has 64 bits of normal data storage plus an additional bit, the NaT bit (Not a Thing), which is used to track deferred specu-
lative exceptions.

The genera registers are partitioned into two subsets. General registers 0 through 31 are termed the static general regis-

ters. Of these, GRO is specia in that it always reads as zero when sourced as an operand and attempting to write to GR 0

causes an lllegal Operation fault. General registers 32 through 127 are termed the stacked general registers. The stacked

registers are made available to a program by allocating a register stack frame consisting of a programmable number of

local and output registers. See Chapter 4.1, “Register Stack” for a description. A portion of the stacked registers can be
programmatically renamed to accelerate loops. See “Modulo-Scheduled Loop Support” on page 4-20.

General registers 8 through 31 contain the 1A-32 integer, segment selector and segment descriptor registers when execut-
ing IA-32 instructions.

3.1.3 Floating-Point Registers

A set of 128 (82-hitjloating-point registersare used for all floating-point computation. They are numbered FRO through
FR127, and are available to all programs at all privilege levels. The floating-point registers are partitioned into two sub-
sets. Floating-point registers 0 through 31 are termesgtdhie floating-point registers. Of these, FRO and FR1 are spe-

cial. FRO always reads as +0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of these is use
as a destination, a fault is raised. Deferred speculative exceptions are recorded with a special register vidaiE\@lled

(Not a Thing Value).

Floating-point registers 32 through 127 are termed dheting floating-point registers. These registers can be program-
matically renamed to accelerate loops. See “Modulo-Scheduled Loop Support” on page 4-20.

Floating-point registers 8 through 31 contain the 1A-32 floating point and multi-media registers when executing 1A-32
instructions.

3.14 Predicate Registers

A set of 64 (1-bitpredicateregistersare used to hold the results of IA-64 compare instructions. These registers are num-
bered PRO through PR63, and are available to all programs at all privilege levels. These registers are used for conditional
execution of instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are teratiedtledicate
registers. Of these, PRO always reads as ‘1’ when sourced as an operand, and when used as a destination, the result is dis
carded. The static predicate registers are also used in conditional branching. See “Predication” on page 4-6.

Predicate registers 16 through 63 are termed dhating predicate registers. These registers can be programmatically
renamed to accelerate loops. See “Modulo-Scheduled Loop Support” on page 4-20.

3.1.5 Branch Registers

A set of 8 (64-bitpranch registers are used to hold 1A-64 branching information. They are numbered BR 0 through BR
7, and are available to all programs at all privilege levels. The branch registers are used to specify the branch target
addresses for indirect branches. For more information see “Branch Instructions” on page 4-19.

3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing 1A-64 instruction. The IP
can be read directly with a mov ip instruction. The IP cannot be directly written, but is incremented as instructions are
executed, and can be set to a new value with a branch. Because I1A-64 instruction bundles are 16 bytes, and are 16-byte
aligned, the least significant 4 bits of IP are always zero. See “Instruction Encoding Overview” on page 3-11. For 1A-32
instruction set execution, IP holds the zero extended 32-bit virtual linear address of the currently executing 1A-32 instruc-
tion. 1A-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are preserved for IA-32 instruction set
execution.

HP/Intel |A-64 Execution Environment 3-3

IA-64 Application ISA Guide 1.0

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker describes the state of the 1A-64
genera register stack. The Current Frame Marker (CFM) holds the state of the current stack frame. The CFM cannot be
directly read or written (see “Register Stack” on page 4-1).

The frame markers contain the sizes of the various portions of the stack frame, plus three Register Rename Base values
(used in register rotation). The layout of the frame markers is shown in Figure 3-2 and the fields are described in
Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function State register (see Section
3.1.8.10). A new value is written to the CFM, creating a new stack frame with no locals or rotating registers, but with a set

of output registers which are the caller’s output registers. Additionally, all Register Rename Base registers (RRBs) are set
to 0. See “Modulo-Scheduled Loop Support” on page 4-20.

37 32 31 25 24 18 17 14 13 7 6 0
’ rrb.pr rrb.fr rrb.gr ‘ sor ’ sol sof ‘
6 7 7 4 7 7

Figure 3-2. Frame Marker Format

Table 3-2. Frame Marker Field Description

Field Bit Range Description
sof 6:0 Size of stack frame
sol 13:7 Size of locals portion of stack frame
sor 17:14 Size of rotating portion of stack frame

(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers
rrb.fr 31:25 Register Rename Base for floating-point registers
rrb.pr 37:32 Register Rename Base for predicate registers

3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers for application-visible processor
functions for both the 1A-32 and 1A-64 instruction sets. These registers can be accessed by IA-64 application software
(except where noted). Table 3-3 contains a list of the application registers.

3-4 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

Table 3-3. Application Registers

) — Execution Unit

Register Name Description Type

AR 0-7 KR 0-7# Kernel Registers 0-7
RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)
AR 18 BSPSTORE Backing Store Pointer for Memory Stores
AR 19 RNAT RSE NAT Collection Register
AR 21 IA-32 Floating-point Control Register
AR 24 IA-32 EFLAG register
AR 25 CsD IA-32 Code Segment Descriptor
AR 26 SSD IA-32 Stack Segment Descriptor
AR 27 CFLG? IA-32 Combined CRO and CR4 register M
AR 28 FSR IA-32 Floating-point Status Register
AR 29 FIR IA-32 Floating-point Instruction Register
AR 30 FDR IA-32 Floating-point Data Register
AR 32 ccv Compare and Exchange Compare Value Register
AR 36 UNAT User NAT Collection Register
AR 40 FPSR Floating-Point Status Register
AR 44 ITC Interval Time Counter
AR 48 — AR 63 Ignored M or |
AR 64 PFS Previous Function State
AR 65 LC Loop Count Register |
AR 66 EC Epilog Count Register
AR 112 — AR 127 Ignored M or |

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are always allowed.

b. Some 1A-32 EFLAG field writes are silently ignored if the privilege level is not zero.

Application registers can only be accessed by either aM or | execution unit. Thisis specified in the last column of the
table. The ignored registers are for future backward-compatible extensions.

3.18.1 Kernel Registers (KR 0-7 —AR 0-7)

Eight user-visible 1A-64 64-bit data kernel registers are provided to convey information from the operating system to the
application. These registers can be read at any privilege level but are writable only at the most privileged level. KRO -
KR2 are also used to hold additional IA-32 register state when the 1A-32 instruction set is executing.

3.1.8.2 Register Stack Configuration Register (RSC — AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation of the 1A-64 Register
Stack Engine (RSE). The RSC format is shown in Figure 3-3 and the field description is contained in Table 3-4. Instruc-

HP/Intel |A-64 Execution Environment 3-5

IA-64 Application ISA Guide 1.0

tions that modify the RSC can never set the privilege level field to a more privileged level than the currently executing
process.

63 30 29 16 15 5 4 3 2 1 0
s ol [mos
34 14 11 1 2 2

Figure 3-3. RSC Format

Table 3-4. RSC Field Description

Field Bit Range Description

mode 1:0 RSE mode — controls how aggressively the RSE saves and restores register frames.
Eager and intensive settings are hints and can be implemented as lazy.
Bit Pattern RSE Mode Bit 1: eager loads | Bit 0: eager stores
00 enforced lazy disabled disabled
10 load intensive enabled disabled
01 store intensive disabled enabled
11 eager enabled enabled

pl 3:2 RSE privilege level — loads and stores issued by the RSE are at this privilege |evel

be 4 RSE endian mode — loads and stores issued by the RSE use this byte ordering
(O: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point — value used limgldes instruction for synchro-
nizing the RSE to a tear point

3.1.8.3 RSE Backing Store Pointer (BSP —AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of the location in memory
which is the save location for GR 32 in the current stack frame.

63 3 2 1 0
pointer ‘ ig ‘
61 3

Figure 3-4. BSP Register Format

3.1.84 RSE Backing Store Pointer for Memory Stores (BSPSTORE —AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It holds the address of the location in
memory to which the RSE will spill the next value.

63 3 2 1 0
pointer ‘ ig ’
61 3

Figure 3-5. BSPSTORE Register Format

3.1.85 RSE NAT Collection Register (RNAT —AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily hold NaT bits when it is
spilling general registers. Bit 63 always reads as zero and ignores all writes.

63
lig| RSE NaT Collection
1 63

Figure 3-6. RNAT Register Format

3.1.8.6 Compare and Exchange Value Register (CCV —AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the compare value used as the third source
operand in the IA-64npxchg instruction.

3-6 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

3.1.8.7 User NAT Collection Register (UNAT —AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when saving and restoring general
registers with the IA-64d8. fill andst 8. spi || instructions.

3.1.8.8 Floating-Point Status Register (FPSR —AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags, and other control bits for
IA-64 floating point instructions. FPSR does not control or reflect the status of 1A-32 floating point instructions. For more
details on the FPSR, see Section 5.2.

3.1.8.9 Interval Time Counter (ITC —AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed relationship to the processor clock fre-
quency. Applications can directly sample the ITC for time-based calculations and performance measurements. System
software can secure the interval time counter from non-privileged IA-64 access. When secured, a read of the ITC at any
privilege level other than the most privileged causes a Privileged Register fault. The ITC can be written only at the most
privileged level. The 1A-32 Time Stamp Counter (TSC) is equivalent to ITC. ITC can directly be read by thedtss32

(read time stamp counter) instruction. System software can secure the ITC from non-privileged IA-32 access. When
secured, an IA-32 read of the ITC at any privilege level other than the most privileged raises an IA-
32_Exception(GPfault).

3.1.8.10 Previous Function State (PFS —AR 64)

The IA-64 Previous Function State register (PFS) contains multiple fields: Previous Frame Marker (pfm), Previous Epilog
Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the PFS format and Table 3-5 describes the PFS
fields. These values are copied automatically on a call from the CFM register, Epilog Count Register (EC) and PSR.cpl
(Current Privilege Level in the Processor Status Register) to accelerate procedure calling.

When an IA-64%r . cal | is executed, the CFM, EC, and PSR.cpl are copied to the PFS and the old contents of the PFS are
discarded. When an IA-64r . ret is executed, the PFS is copied to the CFM and EC. PFS.ppl is copied to PSR.cpl,
unless this action would increase the privilege level.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7), and the PFS.pec has the same layout as the EC (see S
tion 3.1.8.12).

6362 61 58 57 52 51 38 37 0
‘ppl‘ rv ‘ pec ‘ rv ‘ pfm
2 4 6 14 38
Figure 3-7. PFS Format

Table 3-5. PFS Field Description

Field Bit Range Description
pfm 37:0 Previous Frame Marker
pec 57:52 Previous Epilog Count
ppl 63:62 Previous Privilege Level
rv 51:38, 61:58 Reserved

3.1.8.11 Loop Count Register (LC —AR 65)

The Loop Count register (LC) is a 64-bit register used in IA-64 counted loops. LC is decremented by counted-loop-type
branches.

3.1.8.12 Epilog Count Register (EC —AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) stages in 1A-64 modulo-scheduled
loops. See “Modulo-Scheduled Loop Support” on page 4-20. A diagram of the EC register is shown in Figure 3-8.

HP/Intel |A-64 Execution Environment 3-7

IA-64 Application ISA Guide 1.0

63

6 5 0

ig epilog count

3.1.9

58 6
Figure 3-8. Epilog Count Register Format

Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be accessible at al privilege levels.
Performance monitor data can be directly sampled from within the application. The operating system is allowed to secure
user-configured performance monitors. Secured performance counters return zeros when read, regardless of the current
privilege level. The performance monitors can only be written at the most privileged level. Performance monitors can be
used to gather performance information for both |A-32 and | A-64 instruction set execution.

3.1.10

fields.

User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to | A-64 application programs. The user mask
controls memory access alignment, byte-ordering and user-configured performance monitors. It also records the modifica-
tion state of |A-64 floating-point registers. Figure 3-9 show the user mask format and Table 3-6 describes the user mask

il 2c | up] be)
1 1 1 1 1 1

Figure 3-9. User Mask Format

Table 3-6. User Mask Field Descriptions

Field

be

Bit Range

Description

| A-64 Big-endian memory access enable

(controls loads and stores but not RSE memory accesses)

0: accesses are done little-endian

1: accesses are done big-endian

Thisbit isignored for 1A-32 data memory accesses. | A-32 datareferences are always
performed little-endian.

up

User performance monitor enable for |A-32 and | A-64 instruction set execution
0: user performance monitors are disabled
1: user performance monitors are enabled

Alignment check for 1A-32 and |A-64 data memory references
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: al unaligned data memory references cause an Unaligned Data Reference fault.

mfl

Lower (f2 .. f31) floating-point registers written — This bit is set to one when an IA-64

instruction that uses register f2..f31 as a target register, completes. This bit is sticky
only cleared by an explicit write of the user mask.

mfh

and is

Upper (f32 .. f127) floating-point registers written — This bit is set to one when an IA-64

instruction that uses register f32..f127 as a target register, completes. This bit is st
and only cleared by an explicit write of the user mask.

3.1.11

Processor Identification Registers

cky

Application level processor identification information is available in an | A-64 register file termed: CPUID. This register
fileisdivided into afixed region, registers 0 to 4, and a variable region, register 5 and above. The CPUID[3].number field
indicates the maximum number of 8-byte registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect nov (from) instruction. All registers beyond register
CPUIDI[3].number are reserved and raise a Reserved Register/Field fault if they are accessed. Writes are not permitted and
no instruction exists for such an operation.

3-8

IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in ASCII, for the processor imple-
mentation (Figure 3-10). All bytes after the end of the string up to the 16th byte are zero. Earlier ASCII characters are
placed in lower number register and lower numbered byte positions.

63 0
CPUID[O] | | | | | | | byte0 |

cPuUID[1] | bytel5 | | | | | | | |
64

Figure 3-10. CPUID Registers 0 and 1 —Vendor Information

A Processor Serial Number is located in CPUID register 2. If Processor Serial Numbers are supported by the processor
model and are not disabled, this register returns a 64-bit number Processor Serial Number (Figure 3-11), otherwise zero is
returned. The Processor Serial Number (64-bits) must be combined with the 32-bit version information (CPUID register
3; processor archrev, family, model, and revision numbers) to form a 96-bit Processor Identifier.

The 96-bit Processor Identifier is designed to be unique.

63 0
Processor Serial Number ‘
64

Figure 3-11. CPUID Register 2 —Processor Serial Number

CPUID register 3 contains several fields indicating version information related to the processor implementation.
Figure 3-12 and Table 3-7 specify the definitions of each field.

63 40 39 32 31 24 23 16 15 8 7 0

8 8 8 8

24 8

Figure 3-12. CPUID Register 3 —Version Information

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7.0 Theindex of the largest implemented CPUID register (one less than the number of implemented CPUID
registers). Thisvalue will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping of this processor
implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model within the processor
family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision number that the processor
implements.

CPUID register 4 provides general application level information about 1A-64 features. As shown in Figure 3-13, it isa set
of flag bits used to indicate if a given 1A-64 feature is supported in the processor model. When a bit is one the feature is
supported; when 0 the feature is not supported. This register does not contain | A-32 instruction set features. 1A-32 instruc-
tion set features can be acquired by the 1A-32 cpui d instruction. There are no defined feature bits in the current architec-
ture. As new features are added (or removed) from future processor models the presence (or removal) of new features will

be indicated by new feature bits. A value of zero in this register indicates all features defined in the first 1A-64 architec-
tural revision are implemented.

63 0

64
Figure 3-13. CPUID Register 4 —General Features/Capability Bits

HP/Intel |A-64 Execution Environment 3-9

IA-64 Application ISA Guide 1.0

3.2 Memory

This section describes an 1A-64 application program’s view of memory. This includes a description of how memory is
accessed, for both 32-bit and 64-bit applications. The size and alignment of addressable units in memory is also given,
along with a description of how byte ordering is handled.

3.21 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model without a hardware mode is sup-
ported architecturally. Pointers which are 32 bits in memory are loaded and manipulated in 64-bit registers. Software must
explicitly convert 32-bit pointers into 64-bit pointers before use.

3.2.2 Addressable Units and Alignment
Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned boundaries. Hardware and/or operating
system software may have support for unaligned accesses, possibly with some performance cost. 10-byte floating-point
values should be stored on 16-byte aligned boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant bit. Quantities loaded from memory
to general registers are always placed in the least-significant portion of the register (loaded values are placed right justi-
fied in the target general register).

Instruction bundles (3 I1A-64 instructions per bundle) are 16-byte units that are always aligned on 16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or big-endian byte ordering for IA-64
references. When the UM.be bit is 0, larger-than-byte loads and stores are little endian (lower-addressed bytes in memory
correspond to the lower-order bytes in the register). When the UM.be bit is 1, larger-than-byte loads and stores are big
endian (lower-addressed bytes in memory correspond to the higher-order bytes in the register). Load byte and store byte
are not affected by the UM.be bit. The UM.be bit does not affect instruction fetch, 1A-32 references, or the RSE. 1A-64
instructions are always accessed by the processor as little-endian units. When instructions are referenced as big-endian
data, the instruction will appear reversed in a register.

Figure 3-14 shows various loads in little-endian format. Figure 3-15 shows various loads in big endian format. Stores are
not shown but behave similarly.

Memory 63 Registers 0
Address — 9
Or%s A LD1[1]=>| 0| 0| 0| 0| O0|0O|O]|D
1 b
63 0
2 c
LD2[2]=>| 0| 0| 0|0|0|0]|d]|cC
3 d
4 e 63 0
5 f LD4[4=| 0| 0| 0| 0| h|g]|f]e
6 g
7 h 63 0
LD8[0]=> | h | g | f |e|d|c|b]a

Figure 3-14. Little-endian Loads

3-10 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

Memory Registers
Address 7 O 63 0
0 a LD1[1]]=>| 0| O | O] O|O0O|O0O|O0|6D
1 b
2 c 63 0
3 d Lb2[2]=>>| 0|0} 0|O0O|O0|O0|cCc|d
4 © 63 0
° f LD4[4=>| 0| O | O | O | e | f g | h
6 g
7 h 63 0
LD8[O]=>| a | b | c | d| e | f g | h
Figure 3-15. Big-endian Loads
3.3 Instruction Encoding Overview

Each | A-64 instruction is categorized into one of six types; each instruction type may be executed on one or more execu-
tion unit types. Table 3-8 lists the instruction types and the execution unit type on which they are executed:

Table 3-8. Relationship Between Instruction Type and Execution Unit Type

Instruction Description Execution Unit
Type Type
A Integer ALU [-unit or M-unit
I Non-ALU integer | I-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended [-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains
three 41-bit instruction slots and a 5-bit template field. The format of abundleis depicted in Figure 3-16.
127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 ’templ ate#
41 41 41 5

Figure 3-16. Bundle Format

During execution, architectural stopsin the program indicate to the hardware that one or more instructions before the stop
may have certain kinds of resource dependencies with one or more instructions after the stop. A stop is present after each
slot having adouble lineto theright of it in Table 3-9. For example, template 00 has no stops, while template 03 has a stop
after slot 1 and another after slot 2.

In addition to the location of stops, the template field specifies the mapping of instruction slots to execution unit types.
Not all possible mappings of instructions to units are available. Table 3-9 indicates the defined combinations. The three
rightmost columns correspond to the three instruction slots in a bundle. Listed within each column is the execution unit
type controlled by that instruction slot.

HP/Intel |A-64 Execution Environment 3-11

IA-64 Application ISA Guide 1.0

Table 3-9. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit I-unit I-unit
01 M-unit I-unit I-unit H
02 M-unit [-unit [-unit ‘
03 M-unit I-unit I-unit
04 M-unit
05 M-unit

09 M-unit M-unit [-unit H
0A M-unit [[M-unit I-unit ‘
0B M-unit M-unit [-unit H
ocC M-unit F-unit I-unit ‘
0D M-unit F-unit I-unit H
OE M-unit M-unit F-unit \

Extended instructions, used for long immediate integer, occupy two instruction sots.

3.4

An 1A-64 program consists of a sequence of instructions and stops packed in bundles. Instruction execution is ordered as
follows:

Instruction Sequencing

¢ Bundles are ordered from lowest to highest memory address. Instructions in bundles with lower memory addresses
are considered to precede instructions in bundles with higher memory addresses. The byte order of each bundle in
memory is little-endian (the template field is contained in byte 0 of a bundle).

« Within a bundle, instructions are ordered from instruction slot O to instruction slot 2 as specified in Figure 3-16 on
page 3-11.

For additional details on Instruction sequencing, refer to Appendix A, “Instruction Sequencing Considerations”.

3-12 |A-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

4 IA-64 Application Programming Model

This section describes the |1A-64 architectural functionality from the perspective of the application programmer. 1A-64
instructions are grouped into related functions and an overview of their behavior is given. Unless otherwise noted, all
immediates are sign extended to 64 bits before use. The floating-point programming model is described separately in
Chapter 5, “IA-64 Floating-point Programming Model”.

The main features of the IA-64 programming model covered here are:
» General Register Stack
 Integer Computation Instructions
e Compare Instructions and Predication
» Memory Access Instructions and Speculation
» Branch Instructions and Branch Prediction
» Multimedia Instructions
 Register File Transfer Instructions

» Character Strings and Population Count

4.1 Register Stack

As described in “General Registers” on page 3-3, the general register file is divided into static and stacked subsets. The
static subset is visible to all procedures and consists of the 32 registers from GR 0 through GR 31. The stacked subset is
local to each procedure and may vary in size from zero to 96 registers beginning at GR 32. The register stack mechanism
is implemented by renaming register addresses as a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not otherwise visible to application programs. The register stack is disabled during 1A-32 instruc-
tion set execution.

The static subset must be saved and restored at procedure boundaries according to software convention. The stacked sul
set is automatically saved and restored by the Register Stack Engine (RSE) without explicit software intervention. All
other register files are visible to all procedures and must be saved/restored by software according to software convention.

41.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register stack frame. The frame is further par-
titioned into two variable-size areas: the local area and the output area. Immediately after a call, the size of the local area
of the newly activated frame is zero and the size of the output area is equal to the size of the caller’s output area and over-
lays the caller’s output area.

The local and output areas of a frame can be re-sized usiagltbe instruction which specifies immediates that deter-

mine the size of frame (sof) and size of locals (sol). (Note that in the assembly lamtjlagespecifies three operands:

the size of inputs immediate; the size of locals immediate; and the size of outputs immediate. The value of sol is deter-
mined by adding the size of inputs immediate and the size of locals immediate; the value of sof is determined by adding
all three immediates.) The value of sof specifies the size of the entire stacked subset visible to the current procedure; the
value of sol specifies the size of the local area. The size of the output area is determined by the difference between sof and
sol. The values of these parameters for the currently active procedure are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a stacked register outside the
current frame will cause an lllegal Operation fault.

HP/Intel IA-64 Application Programming Model 4-1

IA-64 Application ISA Guide 1.0

When a call-type branch is executed, the CFM is copied to the Previous Frame Marker (PFM) field in the Previous Func-
tion State application register (PFS), and the callee’s frame is created as follows:

e The stacked registers are renamed such that the first register in the caller’s output area becomes GR 32 for the callee
» The size of the local area is set to zero
* The size of the callee’s frame (ggfis set to the size of the caller’s output area,(safo})

Values in the output area of the caller’s register stack frame are visible to the callee. This overlap permits parameter and
return value passing between procedures to take place entirely in registers.

Procedure frames may be dynamically re-sized by issuirg last instruction. Anal | oc instruction causes no renam-

ing, but only changes the size of the register stack frame and the partitioning between local and output areas. Typically,
when a procedure is called, it will allocate some number of local registers for its use (which will include the parameters
passed to it in the caller’s output registers), plus an output area (for passing parameters to procedures it will call). Newly
allocated registers (including their NaT bits) have undefined values.

When a return-type branch is executed, CFM is restored from PFM and the register renaming is restored to the caller’s
configuration. The PFM is procedure local state and must be saved and restored by non-leaf procedures. The CFM is not
directly accessible in application programs and is updated only through the execution of calls atétoengndcl r -

rrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA (caller) to procB (callee). The state of
the register stack is shown at four points: prior to the call, immediately following the call, after procB has executed an
al | oc, and after procB returns to procA.

Instruction Execution Stacked GR's Frame markers
CFM PFM
32 46 52 sol sof sol sof
Caller’s frame (procA) Local A Output A 14 21 | x X
= sof;=21 >
call sol=14 | a
Y 52 38
Callee’s frame (procB)
after call Output B 0 7| |14 21
™ et —7
alloc | SOl =7
' 32 48 50
Callee’s frame (procB)
after alloc Local B Output B, 16 19 |14 21
|= — Lo
sof,,=19
return | sob,=16 b2
Y 32 |46 52
Caller’s frame (procA
s frame (procA) Local A Output A 14 21 (14 21

Figure 4-1. Register Stack Behavior on Procedure Call and Return

The majority of application programs need only isslieoc instructions and save/restore PFM in order to effectively uti-
lize the register stack. A detailed knowledge of the RSE (Register Stack Engine) is required only by certain specialized
application software such as user-level thread packages, debuggers, etc.

4-2 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.1.2 Register Stack Instructions

Theal | oc instruction is used to change the size of the current register stack frame. An al | oc instruction must be the first
instruction in an instruction group otherwise the results are undefined. An al | oc instruction affects the register stack
frame seen by al instructions in an instruction group, including the al | oc itself. An al | oc cannot be predicated. An
al | oc does not affect the values or NaT bits of the allocated registers. When a register stack frame is expanded, newly
allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register stack. These instruc-
tions are used in thread and context switching which necessitate a corresponding switch of the backing store for the regis-
ter stack.

Thef I ushr s instruction is used to force all previous stack frames out to backing store memory. It stallsinstruction execu-
tion until al active frames in the physical register stack up to, but not including the current frame are spilled to the back-
ing store by the RSE. A f | ushr s instruction must be the first instruction in an instruction group; otherwise, the results are
undefined. A f | ushr s cannot be predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizes the register stack manage-
ment instructions. Call- and return-type branches, which affect the stack, are described in “Branch Instructions” on
page 4-19.

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description
AR[PFS].pfm Previous Frame Marker field
AR[RSC] Register Stack Configuration application register
AR[BSP] Backing store pointer application register
AR[BSPSTORE] Backing store pointer application register for memory stores
AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation
alloc Allocate register stack frame
flushrs Flush register stack to backing store
4.2 Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and bit-field-manipulation instructions. Additionally,
they provide a set of instructions to accelerate operations on 32-bit data and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and M-units

421 Arithmetic Instructions

Addition and subtractiora@id, sub) are supported with regular two input forms and special three input forms. The three
input addition form adds one to the sum of two input registers. The three input subtraction form subtracts one from the dif-
ference of two input registers. The three input forms share the same mnemonics as the two input forms and are specified
by appending a “1” as a third source operand.

Immediate forms of addition and subtraction use a register and a 15-bit immediate. The immediate form is obtained sim-
ply by specifying an immediate rather than a register as the first operand. Also, addition can be performed between a reg-
ister and a 22-bit immediate; however, the source register must be GR 0, 1, 2 or 3.

A shift left and add instructiors il add) shifts one register operand to the left by 1 to 4 bits and adds the result to a second
register operand. Table 4-3 summarizes the integer arithmetic instructions.

HP/Intel IA-64 Application Programming Model 4-3

IA-64 Application ISA Guide 1.0

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation
add Addition

add ...,1 Three input addition
sub Subtraction

sub ...,1 Three input subtraction
shl add Shift left and add

Note that an integer multiply instruction is defined which uses the floating-point registers. See “Integer Multiply and Add
Instructions” on page 5-14 for details. Integer divide is performed in software similarly to floating-point divide.
4.2.2 Logical Instructions

Instructions to perform logical ANDafd), OR (r), and exclusive ORx6r) between two registers or between a register
and an immediate are defined. Tdrelcm instruction performs a logical AND of a register or an immediate with the com-
plement of another register. Table 4-4 summarizes the integer logical instructions.

Table 4-4. Integer Logical Instructions

Mnemonic Operation
and Logical and

or Logical or

andcm Logical and complement
xor Logical exclusive or

4.2.3 32-Bit Addresses and Integers

Support for IA-64 32-bit addresses is provided in the form of add instructions that perform region bit copying. This sup-
ports the virtual address translation model. The add 32-bit pointer instrusdidy) @dds two registers or a register and

an immediate, zeroes the most significant 32-bits of the result, and copies bits 31:30 of the second source to bits 62:61 of
the result. Thehl addp instruction operates similarly but shifts the first source to the left by 1 to 4 bits before performing

the add, and is provided only in the two-register form.

In addition, support for 32-bit integers is provided through 32-bit compare instructions and instructions to perform sign
and zero extension. Compare instructions are described in “Compare Instructions and Predication” on page 4-5. The sign
and zero extendskt , zxt) instructions take an 8-bit, 16-bit, or 32-bit value in a register, and produce a properly extended
64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation

addp 32-bit pointer addition

shl addp Shift left and add 32-bit pointer
sxt Sign extend

zxt Zero extend

424 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a general register: variable shifts,
fixed shift-and-mask instructions, a 128-bit-input funnel shift, and special compare operations to test an individual bit
within a general register. The compare instructions for testing a singtebbit)(or for testing the NaT bit gat) are
described in “Compare Instructions and Predication” on page 4-5.

The variable shift instructions shift the contents of a general register by an amount specified by another general register.
The shift right signedsfir) and shift right unsignedfir . u) instructions shift the contents of a register to the right with

4-4 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

the vacated bit positions filled with the sign bit or zeroes respectively. The shift |eft (shl) instruction shifts the contents of
aregister to the left.

The fixed shift-and-mask instructions (ext r, dep) are generalized forms of fixed shifts. The extract instruction (ext r)
copies an arhitrary hit field from a general register to the least-significant bits of the target register. The remaining bits of
the target are written with either the sign of the bit field (ext r) or with zero (ext r. u). The length and starting position of
the field are specified by two immediates. Thisis essentialy a shift-right-and-mask operation. A simple right shift by a
fixed amount can be specified by using shr with an immediate value for the shift amount. This is just an assembly
pseudo-op for an extract instruction where the field to be extracted extends all the way to the |eft-most register bit.

The deposit instruction (dep) takes afield from either the least-significant bits of a general register, or from an immediate
value of al zeroes or al ones, placesit at an arbitrary position, and fills the result to the left and right of the field with
either bits from a second general register (dep) or with zeroes (dep. z). The length and starting position of the field are
specified by two immediates. This is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount
can be specified by using shl with an immediate value for the shift amount. Thisisjust an assembly pseudo-op for dep. z
where the deposited field extends all the way to the left-most register bit.

The shift right pair (shr p) instruction performs a 128-bit-input funnel shift. It extracts an arbitrary 64-bit field from a 128-
bit field formed by concatenating two source general registers. The starting position is specified by an immediate. This
can be used to accelerate the adjustment of unaligned data. A bit rotate operation can be performed by using shrp and
specifying the same register for both operands.

Table 4-6 summarizes the bit field and shift instructions.
Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation

shr Shift right signed

shr.u Shift right unsigned

shl Shift left

extr Extract signed (shift right and mask)
extr.u Extract unsigned (shift right and mask)
dep Deposit (shift left, mask and merge)
dep. z Deposit in zeroes (shift left and mask)
shrp Shift right pair

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For constants up to 22 bits in size, the add
instruction can be used, or the mov pseudo-op (pseudo-op of add with GRO, which always reads 0). For larger constants,
the move long immediate instruction (mov!) is defined to write a 64-bit immediate into a general register. Thisinstruction
occupies two instruction slots within the same bundle, and is the only such instruction.

Table 4-7. Instructions to Generate Large Constants

M nemonic Operation
mov Move 22-bit immediate
mov! Move 64-bit immediate
4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and affect the dynamic execution of
instructions. A compare instruction tests for a single specified condition and generates a boolean result. These results are
written to predicate registers. The predicate registers can then be used to affect dynamic execution in two ways: as condi-
tions for conditional branches, or as qualifying predicates for predication.

HP/Intel IA-64 Application Programming Model 4-5

IA-64 Application ISA Guide 1.0

431 Predication

Predication isthe conditional execution of instructions. The execution of most |A-64 instructions is gated by a qualifying
predicate. If the predicate is true, the instruction executes normally; if the predicate is false, the instruction does not mod-
ify architectural state (except for the unconditional type of compare instructions, floating-point approximation instructions
and while-loop branches). Predicates are one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate isinterpreted as true (predicate register PRO is hardwired to one).

A few |A-64 instructions cannot be predicated. These instructions are: allocate stack frame (al | oc), clear rrb (cl rrrb),
flush register stack (f 1 ushrs), and counted branches (cl oop, ct op, cexi t).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare (cnp, cnp4), floating-point register
compare (f cnp), test bit and test NaT (t bi t, t nat), floating-point class (f ¢l ass), and floating-point reciprocal approxi-
mation and reciprocal square root approximation (fr cpa, frsqgrt a). Most of these compare instructions (all but f r cpa
and frsqrt a) set two predicate registers based on the outcome of the comparison. The setting of the two target registers
is described below in “Compare Types” on page 4-6. Compare instructions are summarized in Table 4-8.

Table 4-8. Compare Instructions

Mnemonic Operation
cnp, cnp4 GR compare
thit Test bitin a GR
t nat Test GR NaT bit
fcmp FR compare
fcl ass FR class
frcpa, fprcpa Floating-point reciprocal approximation
frsgrta, fprsqrta | Floating-point reciprocal square root approximation

The 64-bit ¢€np) and 32-bit ¢np4) compare instructions compare two registers, or a register and an immediate, for one of
ten relations (e.g., >, <=). The compare instructions set two predicate targets according to the respl.ifisieuction
compares the least-significant 32-bits of both sources (the most significant 32-bits are ignored).

The test bitt(bi t) instruction sets two predicate registers according to the state of a single bit in a general register (the
position of the bit is specified by an immediate). The test Nadt() instruction sets two predicate registers according to
the state of the NaT bit corresponding to a general register.

Thef cnp instruction compares two floating-point registers and sets two predicate targets according to one of eight rela-
tions. Thef cl ass instruction sets two predicate targets according to the classification of the number contained in the
floating-point register source.

Thefrcpa andfrsqrta instructions set a single predicate target if their floating-point register sources are such that a
valid approximation can be produced, otherwise the predicate target is cleared.

4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, AND, OR, or DeMorgan. The
type defines how the instruction writes its target predicate registers based on the outcome of the comparison and on the
qualifying predicate. The description of these types is contained in Table 4-9. In the table, “gp” refers to the value of the
qualifying predicate of the compare and “result” refers to the outcome of the compare relation (one if the compare relation
is true and zero if the compare relation is false).

4-6 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Table 4-9. Compare Type Function

Compare Type Completer Operation
First Predicate Target Second Predicate Tar get
Normal none if (qp) {target = result} if (qp) {target = Iresult}
o if target = result if target = Iresult
Unconditional unc elgingt;rggt =0} } elgoelngt;rggt =0} }
AND and if (gp && !result) {target = 0} if (qp && !result) {target = 0}
andcm if (gp && result) {target = 0} if (gp && result) {target = 0}
OR or if (gp && result) {target = 1} if (gp && result) {target = 1}
orcm if (gp && result) {target = 1} if (gp && !result) {target = 1}
DeMorgan or.andcm if (gp && result) {target = 1} if (gp && result) {target = 0}
and.orcm if (gp && !result) {target = 0} if (Qp && !result) {target = 1}

The Normal compare type simply writes the compare result to the first predicate target and the complement of the result to
the second predicate target.

The Unconditional compare type behaves the same as the Normal type, except that if the qualifying predicate is 0, both
predicate targets are written with 0. This can be thought of as an initialization of the predicate targets, combined with a
Normal compare. Note that compare instructions with the Unconditional type modify architectural state when their quali-
fying predicateis false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they allow multiple simultaneous com-
pares (of the same type) to target a single predicate register. This provides the ability to compute a logical equation such as
(r5 == r6) in a single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMor-

gan compare type is just a combination of an OR type to one predicate target and an AND type to the other predicate tar-
get. Multiple OR-type compares (including the OR part of the DeMorgan type) may specify the same predicate target in
the same instruction group. Multiple AND-type compares (including the AND part of the DeMorgan type) may also spec-
ify the same predicate target in the same instruction group.

p5 = (r4 == 0) ||

For all compare instructions (except farat andf cl ass), if one or both of the source registers contains a deferred
exception token (NaT or NaTVal — see “Control Speculation” on page 4-10), the result of the compare is different. Both
predicate targets are treated the same, and are either written to O or left unchanged. In combination with speculation, this
allows predicated code to be turned off in the presence of a deferred excédptiass (behaves this way as well if

NaTVal is not one of the classes being tested for.) Table 4-10 describes the behavior.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation
Normal if (gp) {target = 0}
Unconditional target =0
AND if (gp) {target = 0}
OR (not written)
DeMorgan (not written)

Only a subset of the compare types are provided for some of the compare instructions. Table 4-11 lists the compare types
which are available for each of the instructions.

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided
cnp, cnp4 a==bh,al=b, Normal, Unconditional, AND, OR, DeMorgan
a>0,a>=0,a<0,a<=0,
0>a,0>=a,0<a,0<=a
All other relations Normal, Unconditional
thit,tnat All Normal, Unconditional, AND, OR, DeMorgan
HP/Intel IA-64 Application Programming Model 4-7

IA-64 Application ISA Guide 1.0

Table 4-11. Instructions and Compare Types Provided (Continued)

I nstruction Relation Types Provided
fcnp, fcl ass All Normal, Unconditional
frcpa,frsqrta, Not Applicable Unconditional
fprcpa, fprsqrta

434 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general register. These instructions operatein
a “broadside” manner whereby multiple predicate registers are transferred in parallel, such that predicate register N is
transferred to/from bit N of a general register.

The move to predicates instructiaroy pr=) loads multiple predicate registers from a general register according to a
mask specified by an immediate. The mask contains one bit for each of PR 1 through PR 15 (PR 0 is hardwired to 1) and
one bit for all of PR 16 through PR63 (the rotating predicates). A predicate register is written from the corresponding bit
in a general register if the corresponding mask bit is 1; if the mask bit is 0 the predicate register is not modified.

The move to rotating predicates instructiony pr. r ot =) copies 48 bits from an immediate value into the 48 rotating
predicates (PR 16 through PR 63). The immediate value includes 28 bits, and is sign-extended. Thus PR 16 through PR 42
can be independently set to new values, and PR 43 through PR 63 are all set to either 0 or 1.

The move from predicates instructioro¢ =pr) transfers the entire predicate register file into a general register target.

For all of these predicate register transfers, the predicate registers are accessed as though the register rename base
(CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rrb.pr before initializing rotating predicates.

4.4 Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer data to and from general registers or
floating-point registers. The memory address is specified by the contents of a general register.

Most load and store instructions can also specify base-address-register update. Base update adds either an immediate
value or the contents of a general register to the address register, and places the result back in the address register. The
update is done after the load or store operation, i.e., it is performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 4K-byte boundary, accesses misaligned
with respect to their natural boundaries will always fault if UM.ac (alignment check bit in the User Mask register) is 1. If
UM.ac is 0, then an unaligned access will succeed if it is supported by the implementation; otherwise it will cause an
Unaligned Data Reference fault. All memory accesses that cross a 4K-byte boundary will cause an Unaligned Data Ref-
erence fault independent of UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data Reference fault
if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or little-endian fashion. The byte ordering
for all memory access instructions is determined by UM.be in the User Mask register for IA-64 memory references. All
IA-32 memory references are performed little-endian.

Load, store and semaphore instructions are summarized in Table 4-12.

4-8 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Table 4-12. Memory Access Instructions

M nemonic .
. . Operation
General Floating-point _
Normal L oad Pair
Id | df I dfp Load
Id.s | df.s I dfp.s Speculative load
Id.a Idf.a Idfp.a Advanced load
I d.sa I df . sa | df p. sa Speculative advanced load
Id.c.nc, Id.c.clr ldf.c.nc, ldf.c.clr | Idfp.c.nc, Idfp.c.clr | Check load
Id.c.clr.acq Ordered check load
I d. acq Ordered load
I d. bi as Biased load
| d8. fill ldf . fill Fill
st stf Store
st.rel Ordered store
st.spill stf.spill Spill
cnpxchg Compare and exchange
xchg Exchange memory and GR
f et chadd Fetch and add
4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a floating-point register or a pair of floating-point reg-
isters.

For general register loads, access sizes of 1, 2, 4, and 8 bytes are defined. For sizes less than eight bytes, the loaded value
is zero extended to 64-bits.

For floating-point loads, five access sizes are defined: single precision (4 bytes), double precision (8 bytes), double-

extended precision (10 bytes), single precision pair (8 bytes), and double precision pair (16 bytes). The value(s) loaded

from memory are converted into floating-point register format (see “Memory Access Instructions” on page 5-6 for
details). The floating-point load pair instructions load two adjacent single or double precision numbers into two indepen-
dent floating-point registers (see thef p[s/ d] instruction description for restrictions on target register specifiers). The
floating-point load pair instructions cannot specify base register update.

Variants of both general and floating-point register loads are defined for supporting compiler-directed control and data
speculation. These use the general register NaT bits and the ALAT. See “Control Speculation” on page 4-10 and “Data
Speculation” on page 4-12.

Variants are also provided for controlling the memory/cache subsystem. An ordered load can be used to force ordering in
memory accesses. See “Memory Access Ordering” on page 4-18. A biased load provides a hint to acquire exclusive own-
ership of the accessed line. See “Memory Hierarchy Control and Consistency” on page 4-16.

Special-purpose loads are defined for restoring register values that were spilled to membdg. Thiel instruction

loads a general register and the corresponding NaT bit (defined for an 8-byte access onlgj.. Thiel instruction

loads a value in floating-point register format from memory without conversion (defined for 16-byte access only).
See“Register Spill and Fill” on page 4-12.

442 Store Instructions

Store instructions transfer data from a general or floating-point register to memory. Store instructions are always non-
speculative. Store instructions can specify base-address-register update, but only by an immediate value. A variant is also
provided for controlling the memory/cache subsystem. An ordered store can be used to force ordering in memory
accesses.

Both general and floating-point register stores are defined with the same access sizes as their load counterparts. The only
exception is that there are no floating-point store pair instructions.

HP/Intel IA-64 Application Programming Model 4-9

IA-64 Application ISA Guide 1.0

Special purpose stores are defined for spilling register values to memory. The st 8. spi | | instruction stores ageneral reg-
ister and the corresponding NaT bit (defined for 8-byte access only). This allows the result of a speculative calculation to
be spilled to memory and restored. The st f. spi | | instruction stores a floating-point register in memory in the floating-
point register format without conversion. This allows register spill and restore code to be written to be compatible with
possible future extensions to the floating-point register format. The st f . spi | | instruction also does not fault if theregis-
ter contains a NaTVal, and is defined for 16-byte access only. See“Register Spill and Fill” on page 4-12.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operation and then store a result to
the same memory location. Semaphore instructions are always non-speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exchahgg compare and exchangenpxchg); and fetch
and addf(et chadd).

Thexchg target is loaded with the zero-extended contents of the memory location addressed by the first source and then
the second source is stored into the same memory location.

Thecnpxchg target is loaded with the zero-extended contents of the memory location addressed by the first source; if the
zero-extended value is equal to the contents of the Compare and Exchange Compare Value application register (CCV),
then the second source is stored into the same memory location.

The f et chadd instruction specifies one general register source, one general register target, and an immediate. The
f et chadd target is loaded with the zero-extended contents of the memory location addressed by the source and then the
immediate is added to the loaded value and the result is stored into the same memory location.

Table 4-13. State Relating to Memory Access

Register Function
UM.be User mask byte ordering
UM.ac User mask Unaligned Data Reference fault enable
UNAT GR NaT collection
ccv Compare and Exchange Compare Value application register

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This speculation takes two forms, control
speculation and data speculation, with a separate mechanism to support each. See also “Data Speculation” on page 4-12.

4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of instructions is executed
before it is known that the dynamic control flow of the program will actually reach the point in the program where the
sequence of instructions is needed. This is done with instruction sequences that have long execution latencies. Starting the
execution early allows the compiler to overlap the execution with other work, increasing the parallelism and decreasing
overall execution time. The compiler performs this optimization when it determines that it is very likely that the dynamic
control flow of the program will eventually require this calculation. In cases where the control flow is such that the calcu-
lation turns out not to be needed, its results are simply discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no exceptions encountered that would be
visible to the program can be signalled until it is determined that the program’s control flow does require the execution of
this instruction sequence. For this reason, a mechanism is provided for recording the occurrence of an exception so that it
can be signalled later if and when it is necessary. In such a situation, the exception is said to be deferred. When an excep-
tion is deferred by an instruction, a special token is written into the target register to indicate the existence of a deferred
exception in the program.

Deferred exception tokens are represented differently in the general and floating-point register files. In general registers,
an additional bit is defined for each register called the NaT bit (Not a Thing). Thus general registers are 65 bits wide. A
NaT bit equal to 1 indicates that the register contains a deferred exception token, and that its 64-bit data portion contains
an implementation specific value that software cannot rely upon. In floating-point registers, a deferred exception is indi-

4-10 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

cated by a specific pseudo-zero encoding called the NaTVal (see “Representation of Values in Floating-point Registers”
on page 5-2 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be used speculatively) and non-specula-
tive (instructions which cannot). Non-speculative instructions will raise exceptions if they occur and are therefore unsafe
to schedule before they are known to be executed. Speculative instructions defer exceptions (they do not raise them) and
are therefore safe to schedule before they are know to be executed.

Loads to general and floating-point registers have both non-speculatived(, | df p) and speculativel €. s, | df . s,

| df p. s) variants. Generally, all computation instructions which write their results to general or floating-point registers
are speculative. Any instruction that modifies state other than a general or floating-point register is non-speculative, since
there would be no way to represent the deferred exception (there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A speculative instruction that reads a reg-
ister containing a deferred exception token will propagate a deferred exception token into its target. Thus a chain of
instructions can be executed speculatively, and only the result register need be checked for a deferred exception token to
determine whether any exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is needed, a speculation check
(chk. s) instruction is used. This instruction tests for a deferred exception token. If none is found, then the speculative cal-
culation was successful, and execution continues normally. If a deferred exception token is found, then the speculative
calculation was unsuccessful and must be re-done. In this caskktleinstruction branches to a new address (specified

by an immediate offset in thehk. s instruction). Software can use this mechanism to invoke code that contains a copy of
the speculative calculation (but with non-speculative loads). Since it is now known that the calculation is required, any
exceptions which now occur can be signalled and handled normally.

Since computational instructions do not generally cause exceptions, the only instructions which generate deferred excep-
tion tokens are speculative loads. (IEEE floating-point exceptions are handled specially through a set of alternate status
fields. See “Floating-point Status Register” on page 5-4.) Other speculative instructions propagate deferred exception
tokens, but do not generate them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general registers or the floating-pomt register
are non-speculative. The compacey, cnp4, f cnp), test bit {bi t), floating-point classf(l ass), and floating-point
approximationf(r cpa, f r sqrt a) instructions are special cases. These instructions read general or floating-point registers
and write one or two predicate registers.

For these instructions, if any source contains a deferred exception token, all predicate targets are either cleared or left
unchanged, depending on the compare type (see Table 4-10 on page 4-7). Software can use this behavior to ensure tha
any dependent conditional branches are not taken and any dependent predicated instructions are nullified. See “Predica-
tion” on page 4-6.

Deferred exception tokens can also be tested for with certain compare instructions. The tesafNamgtruction tests

the NaT bit corresponding to the specified general register and writes two predicate results. The floating-point class
(fcl ass) instruction can be used to test for a NaTVal in a floating-point register and write the result to two predicate reg-

isters. {cl ass does not clear both predicate targets in the presence of a NaTVal input if NaTVal is one of the classes
being tested for.)

4444 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception token will raise a Register NaT Con-
sumption fault. Such instructions can be thought of as performing a non-recoverable speculation check operation. In some
compilation environments, it may be true that the only exceptions that are deferred are fatal errors. In such a program, if
the result of a speculative calculation is checked and a deferred exception token is found, execution of the program is ter-
minated. For such a program, the results of speculative calculations can be checked simply by using non-speculative
instructions.

HP/Intel IA-64 Application Programming Model 4-11

IA-64 Application ISA Guide 1.0

4.4.4.5 Register Spill and Fill

Specia store and load instructions are provided for spilling a register to memory and preserving any deferred exception
token, and for restoring a spilled register.

The spill and fill general register instructions (st 8. spi | | ,1d8. fill) aredefined to save/restore a general register along
with the corresponding NaT bhit.

Thest 8. spi | | instruction writes a general register’s NaT bit into the User NaT Collection application register (UNAT),
and, if the NaT bit was 0, writes the register’s 64-bit data portion to memory. If the register’s NaT bit was 1, the UNAT is
updated, but the memory update is implementation specific, and must consistently follow one of three spill behaviors:

e Thest 8. spi | | may not update memory with the register’s 64-bit data portion, or
e Thest 8. spi | | may write a zero to the specified memory location, or

e Thest8.spill may write the register’'s 64-bit data portion to memory, only if that implementation returns a zero
into the target register of all NaTed speculative loads, and that implementation also guarantees that all NaT propagat-
ing instructions perform all computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

Theld8.fill instruction loads a general register from memory taking the corresponding NaT bit from the bit in the
UNAT register addressed by bits 8:3 of the memory address. The UNAT register must be saved and restored by software.
It is the responsibility of software to ensure that the contents of the UNAT register are correct while exegusipgl |

andl d8. fil | instructions.

The floating-point spill and fill instructions(f. spil |, df.fill) are defined to save/restore a floating-point register
(saved as 16 bytes) without surfacing an exception if the FR contains a NaTVal (these instructions do not affect the UNAT
register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that are targets of a speculative
instruction and may therefore contain a deferred exception token. Note also that transfers between the general and float-
ing-point register files cause a conversion between the two deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the instructions related to control specula-
tion.

Table 4-14. State Related to Control Speculation

4.4.5

Data Speculation

Register Description
NaT bits 65th bit associated with each GR indicating a deferred exception
NaTVal Pseudo-Zero encoding for FR indicating a deferred exception
UNAT User NaT collection application register
Table 4-15. Instructions Related to Control Speculation

M nemonic Operation
Id.s, Idf.s, ldfp.s GR and FR speculative loads
[d8.fill, Idf.fill Fill GR with NaT collection, fill FR
st8.spill, stf.spill | Spill GR with NaT collection, spill FR
chk. s Test GR or FR for deferred exception token
t nat Test GR NaT bit and set predicate

Just as control speculative loads and checks allow the compiler to schedule instructions across control dependences, data
speculative loads and checks allow the compiler to schedule instructions across some types of ambiguous data depen-
dences. This section details the usage model and semantics of data speculation and related instructions.

4-12

IA-64 Application Programming Model

HP/Intel

IA-64 Application ISA Guide 1.0

4451 Data Speculation Concepts

An ambiguous memory dependence is said to exist between a store (or any operation that may update memory state) and
aload when it cannot be statically determined whether the load and store might access overlapping regions of memory.
For convenience, a store that cannot be statically disambiguated relative to a particular load is said to be ambiguous rela-
tive to that load. In such cases, the compiler cannot change the order in which the load and store instructions were origi-
nally specified in the program. To overcome this scheduling limitation, a special kind of load instruction called an
advanced load can be scheduled to execute earlier than one or more stores that are ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are dependent upon the advanced load and
later insert a check instruction that will determine whether the speculation was successful or not. For data speculation, the
check can be placed anywhere the original hon-data speculative load could have been schedul ed.

Thus, adata-specul ative sequence of instructions consists of an advanced load, zero or more instructions dependent on the
value of that load, and a check instruction. This means that any sequence of stores followed by aload can be transformed
into an advanced load followed by a sequence of stores followed by a check. The decision to perform such a transforma-
tion is highly dependent upon the likelihood and cost of recovering from an unsuccessful data speculation.

4452 Data Speculation and Instructions

Advanced loads are available in integer (I d. a), floating-point (I df . a), and floating-point pair (I df p. a) forms. When an
advanced load is executed, it allocates an entry in a structure called the Advanced Load Address Table (ALAT). Later,
when a corresponding check instruction is executed, the presence of an entry indicates that the data speculation suc-
ceeded; otherwise, the speculation failed and one of two kinds of compiler-generated recovery is performed:

1. The check load instruction (I d. c, | df . ¢, or | df p. ¢) is used for recovery when the only instruction scheduled
before a store that is ambiguous relative to the advanced load is the advanced load itself. The check load searches
the ALAT for amatching entry. If found, the speculation was successful; if a matching entry was not found, the
speculation was unsuccessful and the check load reloads the correct value from memory. Figure 4-2 shows this
transformation.

Before Data Speculation After Data Speculation
/! other instructions Id8.a r6 =1[r8];; /! advanced | oad
st8 [rd4] =r12 [/ other instructions
ld8 16 =[rg];; st8 [r4] =r12
add r5=r6, r7;; Id8.c.clr r6 =[r8] // check |oad
st8 [r18] =75 add r5=r6, r7;;
st8 [r18] =r5

Figure 4-2. Data Speculation Recovery Using Id.c

2. The advanced load check (chk. a) is used when an advanced load and several instructions that depend on the
loaded value are scheduled before a store that is ambiguous relative to the advanced load. The advanced load
check works like the speculation check (chk. s) in that, if the speculation was successful, execution continues
inline and no recovery is necessary; if speculation was unsuccessful, the chk. a branches to compiler-generated
recovery code. The recovery code contains instructions that will re-execute all the work that was dependent on
the failed data speculative load up to the point of the check instruction. As with the check load, the success of a
data speculation using an advanced load check is determined by searching the ALAT for a matching entry. This
transformation is shown in Figure 4-3.

HP/Intel IA-64 Application Programming Model 4-13

IA-64 Application ISA Guide 1.0

Before Data Speculation

After Data Speculation

/] other instructions

ld8.a r6 =[r8];;

st8 [rd4] =r12 [/ other instructions
|1 d8 ré =[r8];; add r5=r6, r7;;
add r5=r6, r7;; /1 other instructions
st8 [r18] =7r5 st8 [r4] =r12
chk.a.clr r6, recover
back:

st8 [r18] =r5

/1 somewhere el se in program
recover:

| d8 ré =[r8];;

add r5=r6, r7

br back

Figure 4-3. Data Speculation Recovery Using chk.a

Recovery code may use either a normal or advanced load to obtain the correct value for the failed advanced load. An
advanced load is used only when it is advantageous to have an ALAT entry reallocated after afailed speculation. The last
instruction in the recovery code should branch to the instruction following the chk. a.

4.45.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced |oads and checks to operate correctly. The ALAT is
searched in two different ways: by physical addresses and by ALAT register tags. An ALAT register tag is a unique num-
ber derived from the physical target register number and type in conjunction with other implementation-specific state.
I mplementation-specific state might include register stack wrap-around information to distinguish one instance of a phys-
ical register that may have been spilled by the RSE from the current instance of that register, thus avoiding the need to
purge the ALAT on al register stack wrap-arounds.

I A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely on ALAT values being
preserved across an instruction set transition. On entry to 1A-32 instruction set, existing entriesin the ALAT are ignored.
Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. TheALAT register tag for the advanced load is computed. (For | df p. a, atag is computed only for thefirst target
register.)

2. If an entry with amatching ALAT register tag exists, it is removed.

3. A new entry isallocated in the ALAT which contains the new ALAT register tag, the load access size, and atag
derived from the physical memory address.

4. Thevalue at the address specified in the advanced load is |oaded into the target register and, if specified, the base
register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding a matching register tag in the ALAT, both the chk. a and the target
register of al d. c must specify the same register as their corresponding advanced load. Additionally, the check load must
use the same address and operand size as the corresponding advanced load; otherwise, the value written into the target
register by the check load is undefined.

An advanced load check performs the following actions:
1. Itlooksfor amatching ALAT entry and if found, falls through to the next instruction.
2. If no matching entry isfound, the chk. a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a branch or as a fault where the
fault-handler emulates the branch. Although the expected mode of operation is for an implementation to detect matching
entries in the ALAT during checks, an implementation may fail a check instruction even when an entry with a matching
ALAT register tag exists. Thiswill be arare occurrence but software must not assume that the ALAT does not contain the
entry.

4-14 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

A check load checks for a matching entry in the ALAT. If no matching entry is found, it reloads the value from memory
and any faults that occur during the memory reference are raised. When a matching entry is found, the target register is
left unchanged.

If the check load was an ordered check load (I d. c. ¢l r. acq), then it is performed with the semantics of an ordered load
(I d. acq). ALAT register tag lookups by advanced load checks and check loads are subject to memory ordering con-
straints as outlined in “Memory Access Ordering” on page 4-18.

In addition to the flexibility described above, the size, organization, matching algorithm, and replacement algorithm of the
ALAT are implementation dependent. Thus, the success or failure of specific advanced loads and checks in a program
may change: when the program is run on different processor implementations, within the execution of a single program on
the same implementation, or between different runs on the same implementation.

Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur implicitly by events that alter
memory state or explicitly by any of the following instructions:c. clr, I d.c.clr.acq, chk.a.clr,inval a,inv-

al a. e. Events that may implicitly invalidate ALAT entries include those that change memory state or memory translation
state such as:

1. The execution of stores or semaphores on other processors in the coherence domain.
2. The execution of store or semaphore instructions issued on the local processor.

When one of these events occurs, hardware checks each memory region represented by an entry in the ALAT to see if it
overlaps with the locations affected by the invalidation event. ALAT entries whose memory regions overlap with the
invalidation event locations are removed.

4454 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be both control and data specula-
tive. Both control speculativé d. sa, | df . sa, | df p. sa) and non-control speculatived, a, | df . a, | df p. a) variants of

advanced loads are defined for general and floating-point registers. If a speculative advanced load generates a deferred
exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.

4. If the target of the load was a floating-point register, then NaTVal is written to the target register.

If a speculative advanced load does not generate a deferred exception, then its behavior is the same as the correspondin
non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced load check or check load is suf-
ficient to check both for data speculation failures and to detect deferred exceptions.

4.45.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two variants of advanced load checks and
check loads are provided: variants with cledrk(a.clr,ld.c.clr,ld.c.clr.acq, ! df.c.clr,ldfp.c.clr) and
variants with no clearcpk. a. nc,1d. c. nc, 1 df . c. nc, I df p. c. nc).

The clear variants are used when the compiler knows that the ALAT entry will not be used again and wants the entry
explicitly removed. This allows software to indicate when entries are unneeded, making it less likely that a useful entry
will be unnecessarily forced out because all entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is invalidated independently of
whether the address or size fields of the check load and the corresponding advanced load matcha.feor , the entry

is guaranteed to be invalidated only when the instruction falls through (the recovery code is not executed). Thus, a failing
chk. a. cl r may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly invalidate
the entry in question if program correctness depends on the entry being absent afteclekfailed r.

HP/Intel IA-64 Application Programming Model 4-15

IA-64 Application ISA Guide 1.0

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an existing entry should be
maintained in the ALAT or that a new entry should be allocated when a matching ALAT entry doesn't exist. Such variants
can be used within loops to check advanced loads which were presumed loop-invariant and moved out of the loop by the
compiler. This behavior ensures that if the check load fails on one iteration, then the check load will not necessarily fail on
all subsequent iterations. Whenever a new entry is inserted into the ALAT or when the contents of an entry are updated,
the information written into the ALAT only uses information from the check load and does not use any residual informa-
tion from a prior entry. The non-clear variantotk. a, chk. a. nc, does not allocate entries and the’ ‘completer acts as

a hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data speculation.

Structure Function
ALAT Advanced load address table
Table 4-16. State Relating to Data Speculation
Mnemonic Operation
Id.a, Idf.a, ldfp.a GR and FR advanced load
st, st.rel, st8.spill, stf, stf.spill GR and FR store
cnpxchg, fetchadd, xchg GR semaphore
Id.c.clr, Id.c.clr.acq, Idf.c.clr, Idfp.c.clr | GR and FR check load, clear on ALAT hit
Id.c.nc, Idf.c.nc, Idfp.c.nc GR and FR check load, re-allocate on ALAT miss
Id.sa, |df.sa, |dfp.sa GR and FR speculative advanced load
chk.a.clr, chk.a.nc GR and FR advanced load check
i nval a Invalidate all ALAT entries
inval a.e Invalidate individual ALAT entry for GR or FR
Table 4-17. Instructions Relating to Data Speculation
4.4.6 Memory Hierarchy Control and Consistency
4.4.6.1 Hierarchy Control and Hints

IA-64 memory access instructions are defined to specify whether the data being accessed possesses temporal locality. In
addition, memory access instructions can specify which levels of the memory hierarchy are affected by the access. This
leads to an architectural view of the memory hierarchy depicted in Figure 4-4 composed of zero or more levels of cache
between the register files and memory where each level may consist of two parallel structures: a temporal structure and a
non-temporal structure. Note that this view applies to data accesses and not instruction accesses.

Level 1 Level 2 Level N
- — 7 [- 1 [- 1
\ \ \ \ \ \
| | Temporal | | | Temporal | | | Temporal |
| Structure| | | Structure| | | Structure| |
Register \ \ \ \ \ \
. - < R B — <+ Memory
Files \ \ \ \ \ \
\ Non- | | \ Non- | | \ Non- | |
| | temporal| | | | temporal| | | | temporal| |
| Structure | | Structure | | Structure |
| L _ L _
I |
Cache

Figure 4-4. Memory Hierarchy

4-16 1A-64 Application Programming Model

HP/Intel

IA-64 Application ISA Guide 1.0

The tempora structures cache memory accessed with temporal locality; the non-temporal structures cache memory
accessed without temporal locality. Both structures assume that memory accesses possess spatial locality. The existence of
separate temporal and non-temporal structures, as well as the number of levels of cache, isimplementation dependent.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit prefetch. Locality hints
are specified by load, store, and explicit prefetch (I f et ch) instructions. A locality hint specifies a hierarchy level (e.g., 1,
2, dl). An access that is temporal with respect to a given hierarchy leve is treated as tempora with respect to all lower
(higher numbered) levels. An access that is non-temporal with respect to a given hierarchy level is treated as temporal
with respect to al lower levels. Finding a cache line closer in the hierarchy than specified in the hint does not demote the
line. This enables the precise management of lines using | f et ch and then subsequent uses by . nt a loads and stores to
retain that level in the hierarchy. For example, specifying the. nt 2 hint by a prefetch indicates that the data should be
cached at level 3. Subsequent loads and stores can specify . nt a and have the dataremain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the implementation. The local-
ity hints available to loads, stores, and explicit prefetch instructions are given in Table 4-18. Instruction accesses are con-
sidered to possess both temporal and spatial locality with respect to level 1.

Table 4-18. Locality Hints Specified by Each Instruction Class

Instruction Type
Mnemonic L ocality Hint Ifetch,
L oad Store Ifetch.fault
none Temporal, level 1 X X X
nt1 Non-temporal, level 1 X
nt 2 Non-temporal, level 2 X
nta Non-temporal, all levels X X X

Each locality hint implies a particular allocation path in the memory hierarchy. The allocation paths corresponding to the
locality hints are depicted in Figure 4-5. The allocation path specifies the structures in which the line containing the data
being referenced would best be allocated. If the line is already at the same or higher level in the hierarchy no movement
occurs. Hinting that a datum should be cached in atemporal structure indicates that it islikely to beread in the near future

Level 1 Level 2 Level 3

- — — 7 r— — — — "1 - — — 7

L | || | temporal, level 1

| Tempora |! || Tempora || || Tempora |! non-temporal, level 1

: Structure : : Structure : : Structure \ non-temporal, level 2
\

\ I/ |/l \ Memory

< I [/ | \

| |Non-temporal || | | Non-temporal ' | Non-temporal | |

\ B Structure || || Structure || || Structure || non-temporal, al levels

E] [\

Lo _— _ | | L _— _

| I

Cache

Figure 4-5. Allocation Paths Supported in the Memory Hierarchy

Explicit prefetch is defined in the form of the line prefetch instruction (I f et ch, | f et ch. f aul t). The Ifetch instructions
moves the line containing the addressed byte to a location in the memory hierarchy specified by the locality hint. If the
lineis already at the same or higher level in the hierarchy, no movement occurs. Both immediate and register post-incre-
ment are defined for | fetch and | fet ch. faul t. Thel f et ch instruction does not cause any exceptions, does not affect
program behavior, and may be ignored by the implementation. Thel f et ch. f aul t instruction affects the memory hierar-
chy in exactly the sameway as| f et ch but takes exceptions asif it were a 1-byte load instruction.

HP/Intel IA-64 Application Programming Model 4-17

IA-64 Application ISA Guide 1.0

Implicit prefetch is based on the address post-increment of loads, stores, | f et ch and | f et ch. f aul t . The line containing
the post-incremented address is moved in the memory hierarchy based on the locality hint of the originating load, store,
Ifetchorlfetch. fault.If thelineis aready at the same or higher level in the hierarchy then no movement occurs.
Implicit prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by the implemen-
tation.

Another form of hint that can be provided on loads is the | d. bi as load type. This is a hint to the implementation to
acquire exclusive ownership of the line containing the addressed data. The bias hint does not affect program functionality
and may be ignored by the implementation.

Thef ¢ instruction invalidates the cache line in all levels of the memory hierarchy above memory. If the cache line is not
consistent with memory, then it is copied into memory before invalidation.

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

M nemonic Operation
. nt 1 and nt a completer on loads Load usage hints
. nt a completer on stores Store usage hints
prefetch line at post-increment address on loads and stores Prefetch hint
Ifetch, Ifetch. fault with.nt1, nt2, and. nta hints Prefetch line
fc Flush cache

4.4.6.2 Memory Consistency

| A-64 instruction accesses made by a processor are not coherent with respect to instruction and/or data accesses made by

any other processor, nor are instruction accesses made by a processor coherent with respect to data accesses made by that

same processor. Therefore, hardware is not required to keep a processor’s instruction caches consistent with respect to any
processor’s data caches, including that processor’'s own data caches; nor is hardware required to keep a processor’s
instruction caches consistent with respect to any other processor’s instruction caches. Data accesses from different proces-
sors in the same coherence domain are coherent with respect to each other; this consistency is provided by the hardware.
Data accesses from the same processor are subject to data dependency rules; see Section 4.4.7, “Memory Access Order-
ing” below.

The mechanism(s) by which coherence is maintained is implementation dependent. Separate or unified structures for
caching data and instructions are not architecturally visible. Within this context there are two categories of data memory
hierarchy control: allocation and flush. Allocation refers to movement towards the processor in the hierarchy (lower num-
bered levels) and flush refers to movement away from the processor in the hierarchy (higher numbered levels). Allocation
and flush occur in line-sized units; the minimum architecturally visible line size is 32-bytes (aligned on a 32-byte bound-
ary). The line size in an implementation may be smaller in which case the implementation will need to move multiple
lines for each allocation and flush event. An implementation may allocate and flush in units larger than 32-bytes.

In order to guarantee that a write from a given processor becomes visible to the instruction stream of that same, and other,
processors, the affected line(s) must be flushed to memory. Software mayfusegieiction for this purpose. Memory

updates by DMA devices are coherent with respect to instruction and data accesses of processors. The consistency
between instruction and data caches of processors with respect to memory updates by DMA devices is provided by the
hardware. In case a program modifies its own instructionsythe. i andsrlz.i instructions are used to ensure that

prior coherency actions are observed by a given point in the program. Refer to the desgtiptibron page 6-172 for

an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), and write-after-read (WAR)
data dependencies to the same memory location. In addition, memory writes and flushes must observe control dependen-
cies. Except for these restrictions, reads, writes, and flushes may occur in an order different from the specified program
order. Note that no ordering exists between instruction accesses and data accesses or between any two instruction
accesses. The mechanisms described below are defined to enforce a particular memory access order. In the following dis-
cussion, the terms “previous” and “subsequent” are used to refer to the program specified order. The term “visible” is used

4-18 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

to refer to all architecturally visible effects of performing amemory access (at aminimum thisinvolves reading or writing
memory).

Memory accesses follow one of four memory ordering semantics. unordered, release, acquire or fence. Unordered data
accesses may become visible in any order. Release data accesses guarantee that all previous data accesses are made visible
prior to being made visible themselves. Acquire data accesses guarantee that they are made visible prior to al subsequent
data accesses. Fence operations combine the rel ease and acquire semantics into a bi-directional fence, i.e., they guarantee
that al previous data accesses are made visible prior to any subsequent data accesses being made visible.

Explicit memory ordering takes the form of a set of instructions. ordered load and ordered check load (I d. acq,
I d.c.clr.acq), ordered store (st . r el), semaphores (cnpxchg, xchg, f et chadd), and memory fence (nf). Thel d. acq
and | d. c. cl r. acq instructions follow acquire semantics. The st . rel follows release semantics. Thenf instructionisa
fence operation. The xchg, f et chadd. acq, and cnpxchg. acq instructions have acquire semantics. The cnpxchg. rel ,
and f et chadd. r el instructions have release semantics. The semaphore instructions also have implicit ordering. If there
isawrite, it will always follow the read. In addition, the read and write will be performed atomically with no intervening
accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different ordering semantics. “O” indicates
that the first and second reference are performed in order with respect to each other. A “-” indicates that no ordering is
implied other than data dependencies (and control dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

. Second Reference
First Reference .
Fence Acquire Release Unordered
fence o O O (@]
acquire 0] @) (0] (0]
release o - O -
unordered O - 0] -

Table 4-21 summarizes memory ordering instructions related to cacheable memory.

Table 4-21. Memory Ordering Instructions

Mnemonic Operation
Id.acq, Id.c.clr.acq Ordered load and ordered check load
st.rel Ordered store
xchg Exchange memory and general register
cnmpxchg. acq, cnpxchg. rel Conditional exchange of memory and general register
f et chadd. acq, f et chadd. rel Add immediate to memory
nf Memory ordering fence
4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets are bundle-aligned, which means
control is always passed to the first instruction slot of the target bundle (slot 0). Branch instructions are not reguired to b
the last instruction in an instruction group. In fact, an instruction group can contain arbitrarily many branches (provided
that the normal RAW and WAW dependency requirements are met). If a branch is taken, only instructions up to the taken
branch will be executed. After a taken branch, the next instruction executed will be at the target of the branch.

There are two categories of branches: IP-relative branches, and indirect branches. IP-relative branches specify their target
with a signed 21-bit displacement, which is added to the IP of the bundle containing the branch to give the address of the
target bundle. The displacement allows a branch reaeli@¥Bytes and is bundle-aligned. Indirect branches use the
branch registers to specify the target address.

There are several branch types, as shown in Table 4-22. The conditional taras@hbranch which is taken if the speci-
fied predicate is 1, and not-taken otherwise. The conditional call bkanclal | does the same thing, and in addition,
writes a link address to a specified branch register and adjusts the general register stack (see “Register Stack” on

HP/Intel IA-64 Application Programming Model 4-19

IA-64 Application ISA Guide 1.0

page 4-1). The conditional return br . r et does the same thing as an indirect conditional branch, plus it adjusts the general
register stack. Unconditional branches, calls and returns are executed by specifying PR 0 (which is always 1) as the pred-
icate for the branch instruction.

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address
br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect
br.cal | Conditional procedure call Qualifying predicate IP-rel or Indirect
br.ret Conditional procedure return Qualifying predicate Indirect
br.ia Invoke the IA-32 instruction set Unconditional Indirect
br. cl oop Counted loop branch Loop count IP-rel
br.ctop, br.cexit Modulo-scheduled counted loop Loop count and Epilog count IP-rel
br. wt op, br. wexi t Modulo-scheduled while loop Qualifying predicate and Epilog | 1P-rel

count

The counted loop type (CLOOP) uses the Loop Count (LC) application register. If LC is non-zero then it is decremented

and the branch istaken. If LC is zero, the branch falls through. The modul o-scheduled loop type branches (CTOP, CEXIT,

WTOP, WEXIT) are described in “Modulo-Scheduled Loop Support” on page 4-20. The loop type branches (CLOOP,
CTOP, CEXIT, WTOP, WEXIT) are allowed only in slot 2 of a bundle. A loop type branch executed in slot O or 1 will
cause an lllegal Operation fault.

Instructions are provided to move data between branch registers and general registets (nov br =). Table 4-23
summarizes state and instructions relating to branching.

Table 4-23. State Relating to Branching

Register Function
BRs Branch registers
PRs Predicate registers
CFM Current Frame Marker
PFS Previous Function State application register
LC Loop Count application register
EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

M nemonic Operation
br Branch
mov =br Move from BR to GR
nmov br= Move from GR to BR

45.1 Modulo-Scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types. Software pipelining of
a loop is analogous to hardware pipelining of a functional unit. The loop body is partitioned into multiple “stages” with
zero or more instructions in each stage. Modulo-scheduled loops have 3 phases: prolog, kernel, and epilog. During the
prolog phase, new loop iterations are started each time around (filling the software pipeline). During the kernel phase, the
pipeline is full. A new loop iteration is started, and another is finished each time around. During the epilog phase, no new
iterations are started, but previous iterations are completed (draining the software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that stage (this predicate is called the
“stage predicate”). To support the pipelining effect of stage predicates and registers in a software-pipelined loop, a fixed
sized area of the predicate and floating-point register files (PR16-PR63 and FR32-FR127), and a programmable sized area
of the general register file, are defined to “rotate.” The size of the rotating area in the general register file is détermined

an immediate in thal | oc instruction. This immediate must be either zero or a multiple of 8. The general register rotating
area is defined to start at GR32 and overlay the local and output areas, depending on their relative sizes. The stage predi-

4-20 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

cates are allocated in the rotating area of the predicate register file. For counted loops, PR16 is architecturally defined to
be the first stage predicate with subsequent stage predicates extending to higher predicate register numbers. For while
loops, the first stage predicate may be any rotating predicate with subsequent stage predicates extending to higher predi-
cate register numbers. Software is required to initialize the stage (rotating) predicates prior to entering the loop. An aloc
instruction may not change the size of the rotating portion of the register stack frame unless all rotating register bases
(rrb’s) in the CFM are zero. All rrb’s can be set to zero withcthe r b instruction. Thesl rrrb. pr form can be used to
clear just the rrb for the predicate registers. dlhe r b instruction must be the last instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is executed. Registers are rotated
towards larger register numbers in a wrap-around fashion. For example, the value in register X will be located in register
X+1 after one rotation. If X is the highest addressed rotating register its value will wrap to the lowest addressed rotating
register. Rotation is implemented by renaming register numbers based upon the value of a rotating register base (rrb) con-
tained in CFM. A rrb is defined for each of the three rotating register files: CFM.rrb.gr for the general registers;
CFM.rrb.fr for the floating-point registers; CFM.rrb.pr for the predicate registers. General registers only rotate when the
size of the rotating region is not equal to zero. Floating-point and predicate registers always rotate. When rotation occurs,
two or all three rrb’'s are decremented in unison. Each rrb is decremented modulo the size of their respective rotating
regions (e.g., 96 for rrb.fr). The operation of the rotating register rename mechanism is not otherwise visible to software.
The instructions that modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation
clrrrb Clears all rrb’s
clrrrb. pr Clears rrb.pr
br.cal | Clears all rrb’s
br.ret Restores CFM.rrb’s from PFM.rrb’s
br.ctop, br.cexit, br.wop, and br.wexit Decrements all rrb’s

There are two categories of software-pipelined loop branch types: counted and while. Both categories have two forms: top
and exit. The “top” variant is used when the loop decision is located at the bottom of the loop body. A taken branch will
continue the loop while a not-taken branch will exit the loop. The “exit” variant is used when the loop decision is located
somewhere other than the bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the
loop. The “exit” variant is also used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted loop type (ctop or cexit), the value of
the loop count application register (LC), and the value of the epilog count application register (EC). Note that the counted
loop branches do not use a qualifying predicate. LC is initialized to one less than the number of iterations for the counted
loop and EC is initialized to the number of stages into which the loop body has been partitioned. While LC is greater than
zero, the branch direction will continue the loop, LC will be decremented, registers will be rotated (rrb’s are decre-
mented), and PR 16 will be set to 1 after rotation. (For each of the loop-type branches, PR 63 is written by the branch, and
after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. While in the epilog and while EC
is greater than one, the branch direction will continue the loop, EC will be decremented, registers will be rotated, and PR
16 will be set to 0 after rotation. Execution of a counted loop branch with LC equal to zero and EC equal to one signals the
end of the loop; the branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16 will
be set to 0 after rotation. A counted loop type branch executed with both LC and EC equal to zero will have a branch
direction to exit the loop. LC, EC, and the rrb’s will not be modified (no rotation) and PR 63 will be setto 0. LC and EC
equal to zero can occur in some types of optimized, unrolled software-pipelined loops if the target of a cexit branch is set
to the next sequential bundle and the loop trip count is not evenly divisible by the unroll amount.

The direction of a while loop branch is determined by the specific while loop type (wtop or wexit), the value of the quali-
fying predicate, and the value of EC. The while loop branches do not use LC. While the qualifying predicate is one, the
branch direction will continue the loop, registers will be rotated, and PR 16 will be set to 0 after rotation. While the quali-
fying predicate is zero and EC is greater than one, the branch direction will continue the loop, EC will be decremented,
registers will be rotated, and PR 16 will be set to O after rotation. The qualifying predicate is one during the kernel and
zero during the epilog. During the prolog, the qualifying predicate may be zero or one depending upon the scheme used to
program the pipelined while loop. Execution of a while loop branch with qualifying predicate equal to zero and EC equal
to one signals the end of the loop; the branch direction will exit the loop, EC will be decremented, registers will be rotated,

HP/Intel IA-64 Application Programming Model 4-21

IA-64 Application ISA Guide 1.0

and PR 16 will be set to 0 after rotation. A while loop branch executed with a zero qualifying predicate and with EC equal
to zero has abranch direction to exit the loop. EC and the rrb’s will not be modified (no rotation) and PR 63 will be set to
0.

For while loops, the initialization of EC depends upon the scheme used to program the pipelined while loop. Often, the
first valid condition for the while loop branch is not computed until several stages into the prolog. Therefore, software
pipelines for while loops often have several speculative prolog stages. During these stages, the qualifying predicate can be
set to zero or one depending upon the scheme used to program the loop. If the qualifying predicate is one throughout the
prolog, EC will be decremented only during the epilog phase and is initialized to one more than the number of epilog
stages. If the qualifying predicate is zero during the speculative stages of the prolog, EC will be decremented during this
part of the prolog, and the initialization value for EC is increased accordingly.

452 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction. This information can
be encoded with branch hints as part of a branch instruction (referred to as hints). Hints do not affect the functional behav-
ior of the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

* Whether prediction strategy: This describes (for COND, CALL and RET type branches) how the processor should
predict the branch condition. (For the loop type branches, prediction is based on LC and EC.) The suggested strate-
gies that can be hinted are shown in Table 4-26.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation
spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this branch.
sptk Static Taken Always predict taken, do not allocate prediction resources for this branch.
dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history information exists
for this branch, predict not-taken.
dpt k Dynamic Taken Use dynamic prediction hardware. If no dynamic history information exists
for this branch, predict taken.

» Sequential prefetch: This indicates how much code the processor should prefetch at the branch target (shown in
Table 4-27).

Table 4-27. Sequential Prefetch Hint on Branches

Completer Sequential Prefetch Hint Operation
few Prefetch few lines When prefetching code at the branch target, stop prefetching after a
few (implementation-dependent number of) lines.
many Prefetch many lines When prefetching code at the branch target, prefetch more lines (also
an implementation-dependent number).

 Predictor deallocation: This provides re-use information to allow the hardware to better manage branch prediction
resources. Normally, prediction resources keep track of the most-recently executed branches. However, sometimes
the most-recently executed branch is not useful to remember, either because it will not be re-visited any time soon or
because a hint instruction will re-supply the information prior to re-visiting the branch. In such cases, this hint can be
used to free up the prediction resources.

Table 4-28. Predictor Deallocation Hint

‘ Completer Operation
none Don'’t deallocate
clr Deallocate branch information

4-22 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.6 Multimedia Instructions

Multimediainstructions (see Table 4-29) treat the general registers as concatenations of eight 8-bit, four 16-bit, or two 32-
bit elements. They operate on each element independently and in parallel. The elements are always aligned on their natu-
ral boundaries within a general register. Most multimedia instructions are defined to operate on multiple element sizes.
Three classes of multimediainstructions are defined: arithmetic, shift and data arrangement.

46.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation (padd. sss,
psub. sss), and unsigned saturation (padd. uuu, padd. uus, psub. uuu, psub. uus). The modulo forms have the result
wrap around the largest or smallest representable value in the range of the result element. In the saturating forms, results
larger than the largest representable value of the range of the result element, or smaller than the smallest representable
value of the range, are clamped to the largest or smallest value in the range of the result element respectively. The signed
saturation form treats both sources as signed and clamps the result to the limits of a signed range. The unsigned saturation
form treats one source as unsigned and clamps the result to the limits of an unsigned range. Two variants are defined that
treat the second source as either signed (. uus) or unsigned (. uuu).

The pardlel average instruction (pavg, pavg. raz) adds corresponding elements from each source and right shifts each
result by one bit. In the simple form of the instruction, the carry out of the most-significant bit of each sum iswritten into
the most significant bit of the result element. In the round-away-from-zero form, a1 is added to each sum before shifting.
The parallel average subtract instruction (pavgsub) performs a similar operation on the difference of the sources.

The paralle shift left and add instruction (pshl add) performs aleft shift on the elements of the first source and then adds
them to the corresponding elements from the second source. Signed saturation is performed on both the shift and the add
operations. The parallel shift right and add instruction (pshr add) is similar to pshl add. Both of these instructions are
defined for 2-byte elements only.

The parallel compare instruction (pcnp) compares the corresponding elements of both sources and writes all ones (if true)
or al zeroes (if false) into the corresponding elements of the target according to one of two relations (== or >).

The paralel multiply right instruction (pnpy. r) multiplies the corresponding two even-numbered signed 2-byte elements
of both sources and writes the results into two 4-byte elements in the target. The pnpy. | instruction performs a similar
operation on odd-numbered 2-byte elements. The parallel multiply and shift right instruction (pnpyshr, prpyshr . u) mul-
tiplies the corresponding 2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right
by O, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte shifted results are then
stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute difference of corresponding 1-byte
elements and writes the result in the target.

The parallel minimum (pm n. u, pmi n) and the parallel maximum (prax. u, prmax) instructions deliver the minimum or
maximum, respectively, of the corresponding 1-byte or 2-byte elements in the target. The 1-byte elements are treated as
unsigned values and the 2-byte elements are treated as signed values.

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte | 2-byte | 4-byte
padd Parallel modulo addition X X X
padd. sss Parallel addition with signed saturation X X
padd. uuu, padd. uus Parallel addition with unsigned saturation X X
psub Parallel modulo subtraction X X X
psub. sss Parallel subtraction with signed saturation X X
psub. uuu, psub. uus Parallel subtraction with unsigned saturation X X
pavg Parallel arithmetic average X X
pavg. raz Parallel arithmetic average with round away from zero X X
pavgsub Parallel average of a difference X X
pshl add Parallel shift left and add with signed saturation X
pshr add Parallel shift right and add with signed saturation X

HP/Intel IA-64 Application Programming Model 4-23

IA-64 Application ISA Guide 1.0

Table 4-29. Parallel Arithmetic Instructions (Continued)

Mnemonic Operation 1-byte | 2-byte | 4-byte
pcnp Parallel compare X X X
pnpy. | Parallel signed multiply of odd elements X
pnpy. r Parallel signed multiply of even elements X
pnpyshr Parallel signed multiply and shift right
pnpyshr.u Parallel unsigned multiply and shift right X
psad Parallel sum of absolute difference X
pm n Parallel minimum
pmax Paralel maximum

4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first source by a count contained in either
agenera register or an immediate. The parallel shift right instruction (pshr) performs an individual arithmetic right shift
of each element of one source by a count contained in either a general register or an immediate. The pshr . u instruction
performs an unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte | 2-byte | 4-byte
pshl Parallel shift left X X
pshr Parallel signed shift right X X
pshr.u Parallel unsigned shift right X X

4.6.3 Data Arrangement

The mix right instruction (mi x. r) interleaves the even-numbered elements from both sources into the target. The mix left
instruction (m x. 1) interleaves the odd-numbered elements. The unpack low instruction (unpack. |) interleaves the ele-
ments in the least-significant 4 bytes of each source into the target register. The unpack high instruction (unpack. h) inter-
leaves elements from the most significant 4 bytes. The pack instructions (pack. sss, pack. uss) convert from 32-bit or
16-bit elements to 16-bit or 8-bit elements respectively. The least-significant half of larger elements in both sources are
extracted and written into smaller elements in the target register. The pack. sss instruction treats the extracted elements
as signed values and performs signed saturation on them. The pack. uss instruction performs unsigned saturation. The
mux instruction (nmux) copiesindividua 2-byte or 1-byte elements in the source to arbitrary positionsin the target accord-
ing to a specified function. For 2-byte elements, an 8-bit immediate allows all possible permutations to be specified. For
1-byte elements the copy function is selected from one of five possibilities (reverse, mix, shuffle, alternate, broadcast).
Table 4-31 describes the various types of paralel data arrangement instructions.

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte | 2-byte | 4-byte
m x. | Interleave odd elements from both sources X X X
mx.r Interleave even elements from both sources X X X
mix Arbitrary copy of individual source elements X X
pack. sss Convert from larger to smaller elements with signed saturation X X
pack. uss Convert from larger to smaller elements with unsigned saturation X
unpack. | Interleave |east-significant elements from both sources X
unpack. h Interleave most significant e ements from both sources X
4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register file and the floating-point, branch,
predicate, performance monitor, processor identification, and application register files. Several of the transfer instructions
share the same mnemonic (nov). The value of the operand identifies which register file is accessed.

4-24 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Table 4-32. Register File Transfer Instructions

M nemonic Operation
getf.exp, getf.sig Move FR exponent or significand to GR
getf.s, getf.d Move single/double precision memory format from FR to GR
setf.s, setf.d Move single/double precision memory format from GR to FR
setf.exp, setf.sig Move from GR to FR exponent or significand
mov =br Move from BR to GR
nmov br= Move from GR to BR
nov =pr Move from predicates to GR
mov pr=, mov pr.rot= Move from GR to predicates
nov ar= Move from GR to AR
nmov =ar Move from AR to GR
sum rum Set and reset user mask
mov =prd[...] Move from performance monitor data register to GR
mov =cpuid[...] Move from processor identification register to GR
mov =ip Move from Instruction Pointer

Memory access instructions only target or source the general and floating-point register files. It is necessary to use the
general register file as an intermediary for transfers between memory and all other register files except the floating-point
register file.

Two classes of move are defined between the general registers and the floating-point registers. The first type moves the
significand or the sign/exponent (get f . si g, setf. si g, getf. exp, set f. exp). The second type moves entire single or
double precision numbers(get f . s, setf. s, getf. d, set f. d). Theseinstructions a so perform a conversion between the
deferred exception token formats.

Instructions are provided to transfer between the branch registers and the general registers.

Instructions are defined to transfer between the predicate register file and a general register. These instructions operate in

a “broadside” manner whereby multiple predicate registers are transferred in parallel (predicate register N is transferred to
and from bit N of a general register). The move to predicate instruebengr =) transfers a general register to multiple
predicate registers according to a mask specified by an immediate. The mask contains one bit for each of the static predi-
cate registers (PR 1 through PR 15 — PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through
PR63). A predicate register is written from the corresponding bit in a general register if the corresponding mask bit is set.
If the mask bit is clear then the predicate register is not modified. The rotating predicates are transferred as if CFM.rrb.pr
were zero. The actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate instruction (
=pr) transfers the entire predicate register file into a general register target.

Thenov =pnd[] instruction is defined to move from a performance monitor data (PMD) register to a general register. If
the operating system has not enabled reading of performance monitor data registers in user level then all zeroes are
returned. Therov =cpui d[] instruction is defined to move from a processor identification register to a general register.

Thenov =i p instruction is provided for copying the current value of the instruction pointer (IP) into a general register.

4.8 Character Strings and Population Count

A small set of special instructions accelerate operations on character and bit-field data.

48.1 Character Strings

The compute zero index instructiorzX. | , czx. r) treat the general register source as either eight 1-byte or four 2-byte
elements and write the general register target with the index of the first zero element found. If there are no zero elements
in the source, the target is written with a constant one higher than the largest possible index (8 for the 1-byte form, 4 for
the 2-byte form). Thezx. | instruction scans the source from left to right with the left-most element having an index of
zero. Theczx. r instruction scans from right to left with the right-most element having an index of zero. Table 4-33 sum-
marizes the compute zero index instructions.

HP/Intel IA-64 Application Programming Model 4-25

IA-64 Application ISA Guide 1.0

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte | 2-byte
czx. | Locate first zero element, | eft to right X X
czX.r Locate first zero element, right to left X X

4.8.2 Population Count

The population count instruction (popcnt) writes the number of bits which have avaue of 1 in the source register into the
target register.

4-26 1A-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

5 IA-64 Floating-point Programming Model

The |A-64 floating-point architecture is fully compliant with the ANSI/IEEE Standard for Binary Floating-Point Arith-
metic (Std. 754-1985). There is full IEEE support for single, double, and double-extended real formats. The two IEEE
methods for controlling rounding precision are supported. The first method converts results to the double-extended expo-
nent range. The second method converts results to the destination precision. Some |EEE extensions such as fused multiply
and add, minimum and maximum operations, and a register file format with a larger range than the minimum double-
extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real types); 64-bit signed integer, 64-bit

unsigned integer, and the 82-bit floating-point register format. A “Parallel FP” format where a pair of IEEE single preci-
sion values occupy a floating-point register’s significand is also supported. A seventh data type, IEEE-style quad-preci-
sion, is supported by software routines. A future architecture extension may include additional support for the quad-
precision real type.

511 Real Types
The parameters for the supported IEEE real types are summarized in Table 5-1.
Table 5-1. IEEE Real-Type Properties

! Double- uad-

Single Double Extended P?ecision
|EEE Real-Type Parameters
Sign + or- +or- +or- +or-
Emax +127 +1023 +16383 +16383
Emin -126 -1022 -16382 -16382
Exponent bias +127 +1023 +16383 +16383
Precision (bits) 24 53 64 113
IEEE Memory Formats
Total memory format width (bits) 32 64 80 128
Sign field width (bits) 1 1 1 1
Exponent field width (bits) 8 11 15 15
Significand field width (bits) 23 52 64 112

5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The format of data in the floating-point
registers is designed to accommodate both of these types with no loss of information.

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see Figure 5-1). The three fields are:

» The 64-bitsignificand field, bgs. bgobg; bibg, contains the number's significant digits. This field is composed of an
explicit integer bit (significand{63}), and 63 bits of fraction (significand{62:0}). For Parallel FP data, the significand
field holds a pair of 32-bit IEEE single real numbers.

« The 17-bitexponent field locates the binary point within or beyond the significant digits (i.e., it determines the num-
ber's magnitude). The exponent field is biased by 65535 (OxFFFF). An exponent field of all ones is used to encode the

HP/Intel IA-64 Floating-point Programming Model 5-1

IA-64 Application ISA Guide 1.0

special values for |EEE signed infinity and NaNs. An exponent field of all zeros and asignificand field of all zerosis
used to encode the special values for IEEE signed zeros. An exponent field of al zeros and a non-zero significand
field encodes the double-extended real denormals and doubl e-extended real pseudo-denormals.

« The 1-bitsign field indicates whether the number is positive (sign=0) or negative (sign=1). For Parallel FP data, this

bit is always 0.

81 80 64 63

significand (with explicit integer hit) ‘

@ exponent
1

17

64

Figure 5-1. Floating-point Register Format

The value of a finite floating-point number, encoded with non-zero exponent field, can be calculated using the expression:
(-1)(89M = p(exponent - 65535) (qjgnificand({ 63} .significand{ 62:0} ,)
The value of afinite floating-point number, encoded with zero exponent field, can be cal culated using the expression:
(-1)(S19M* (-16382)x (g gnificandy{ 63} .significand{ 62:0} ,)

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand field. In their canonical form,
the exponent field is set to 0x1003E (biased 63) and the sign field is set to O.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed bel ow in Table 5-2 (shaded encod-
ings are unsupported). The last two table entries contain the values of the constant floating-point registers, FR 0 and FR 1.
The constant value in FR 1 does not change for the parallel single precision instructions or for the integer multiply accu-

mulate instruction and would not generally be useful.

Table 5-2. Floating-point Register Encodings

Sign Biased _ Significand
Classor Subclass (1 bit) Expoqent i.bb...bb (explicit integer bit is shown)
(17-bits) (64-bits)
NaNs 0/1 Ox1FFFF 1.000...01 through 1.111...11
Quiet NaNs 0/1 Ox1FFFF 1.100...00 through 1.111....11
Quiet NaN Indefinite? 1 Ox1FFFF 1.100...00
Signaling NaNs 0/1 Ox1FFFF 1.000...01 through 1.011...11
Infinity 0/1 OX1FFFF 1.000...00
Pseudo-NaNs 0/1 Ox1FFFF 0.000...01 through 0.111...11
Pseudo-Infinity 0/1 Ox1FFFF 0.000...00
Normalized Numbers 0/1 0x00001 1.000...00 through 1.111...11
(Floating-point Register Format Normals) through
Ox1FFFE
Integers or Parallel FP 0 0x1003E 1.000...00 through 1.111...11
(large unsigned or negative signed integers)
Integer Indefinite? 0 0x1003E 1.000...00
|IEEE Single Real Normals 0/1 OxOFF81 1.000...00...(40)0s
through through
0x1007E | 1.111..11...(40)0s
|EEE Double Real Normals 0/1 Ox0FCO01 1.000...00...(11)0s
through through
O0x103FE 1.111...11...(11)0s
| EEE Double-Extended Real Normals 0/1 0x0C001 1.000...00 through 1.111...11
through
Ox13FFE

5-2 IA-64 Floating-point Programming Model

HP/Intel

IA-64 Application ISA Guide 1.0

Table 5-2. Floating-point Register Encodings (Continued)

Normal numbers with the same valueas Dou- | 0/1 0x0C001 1.000...00 through 1.111....11
ble-Extended Real Pseudo-Denormals
IA-32 Stack Single Real Normals 0/1 0x0C001 1.000...00...(40)0s
(produced when the computation model is|A-32 through through
Stack Single) Ox13FFE 1.111...11...(40)0s
|A-32 Stack Double Real Normals 0/1 0x0C001 1.000...00...(11)0s
(produced when the computation model is1A-32 through through
Stack Double) Ox13FFE 1.111...11...(11)0s
Unnormalized Numbers 0/1 0x00000 0.000...01 through 1.111...11
(Floating-point Register Format unnormalized num- 0x00001 | 0.000...01 through 0.111...11
bers) through
Ox1FFFE
0x00001 0.000...00
through
Ox1FFFD
1 Ox1FFFE 0.000...00
Integers or Parallel FP 0 0x1003E 0.000...00 through 0.111...11
(positive signed/unsigned integers)
Single Real Denormals o/1 OxOFF81 0.000...01....(40)0s
through
0.111...11...(40)0s
Double Real Denormals 0/1 Ox0FC01 0.000...01...(11)0s
through
0.111...11...(11)0s
Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11
Double-Extended Real Denormals 01 0x00000 0.000...01 through 0.111...11
Unnormal numbers with the same value as 0/1 0x0C001 0.000...01 through 0.111...11
Double-Extended Real Denormal's
Double-Extended Real Pseudo-Denormals 0/1 0x00000 1.000...00 through 1.111...11
(1A-32 stack and memory format)
IA-32 Stack Single Real Denormals o/1 0x00000 0.000...01...(40)0s
(produced when computation model is1A-32 through
Stack Single) 0.111...11...(40)0s
|A-32 Stack Double Real Denormals 0/1 0x00000 0.000...01...(11)0s
(produced when computation model is |A-32 through
Stack Double) 0.111...11...(11)0s
Pseudo-Zeros 0/1 0x00001 0.000...00
through
Ox1FFFD
1 Ox1FFFE 0.000...00
NaTVal® 0 Ox1FFFE 0.000...00
Zero 0/1 0x00000 0.000...00
FR O (positive zero) 0 0x00000 0.000...00
FR 1 (positive one) 0 OxOFFFF 1.000...00

a. Default response on amasked real invalid operation.
b. Default response on a masked integer invalid operation.
c. Created by unsuccessful speculative memory operation.

All register file encodings are allowed as inputs to arithmetic operations. The result of an arithmetic operation is aways
the most normalized register file representation of the computed value, with the exponent range limited from Emin to
Emax of the destination type, and the significand precision limited to the number of precision bits of the destination type.

HP/Intel IA-64 Floating-point Programming Model 5-3

IA-64 Application ISA Guide 1.0

Computed values, such as zeros, infinities, and NaNs that are outside these bounds are represented by the corresponding
unique register file encoding. Double-extended real denormal results are mapped to the register file exponent of 0x00000
(instead of 0xOC001). Unsupported encodings (Pseudo-NaNs and Pseudo-Infinities), Pseudo-zeros and Doubl e-extended
Real Pseudo-denormals are never produced as a result of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception. Pseudo-zero multiplied
by infinity returns the correctly signed infinity instead of an Invalid Operation Floating-Point Exception fault (and
QNaN). Also, pseudo-zeros are classified as unnormalized numbers, not zeros.

5.2

Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status information for floating-point opera-
tions. There is one main set of control and status information (FPSR.sf0), and three alternate sets (FPSR.sf1, FPSR.sf2,

FPSR.sf3). The FPSR layout is shown in Figure 5-2 and its fields are defined in Table 5-3. Table 5-4 gives the FPSR’s sta-

tus field description and Figure 5-3 shows their layout.

63 58 57 45 44 32 31 19 18 6 5 0
rv sf3 sf2 ‘ sfl ‘ sfO ‘ traps ‘
6 13 13 13 13 6
Figure 5-2. Floating-point Status Register Format
Table 5-3. Floating-point Status Register Field Description
Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this bit is
traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this bit ig
traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is set
traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set
traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set
traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set
sfo 18:6 Main status field
sfl 31:19 Alternate status field 1
sf2 44:32 Alternate status field 2
sf3 57:45 Alternate status field 3

12 11 10 9 8 7 6 5 4 3 2 1 0
FPSR.sfx

controls
td’ rc’ pc‘wr#eft
7

i’u’olgzs’d‘v

N

Figure 5-3. Floating-point Status Field Format

Table 5-4. Floating-point Status Register’s Status Field Description

set
set

Field Bits Description
ftz 0 Flush-to-Zero mode
wre 1 Widest range exponent (see Table 5-6)
pc 3.2 Precision control (see Table 5-6)
rc 5:4 Rounding control (see Table 5-5)
td 6 Traps disabled®
% 7 Invalid Operation (IEEE Flag)
5-4 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Table 5-4. Floating-point Status Register’s Status Field Description (Continued)

Field Bits Description
d 8 Denormal/Unnormal Operand
Z 9 Zero Divide (IEEE Flag)
o] 10 Overflow (IEEE Flag)
u 11 Underflow (IEEE Flag)
i 12 Inexact (IEEE Flag)

a tdisareserved bit in the main status field, FPSR.sfO.

The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if the value is used in an arithmetic

instruction and in an arithmetic calculation; e.g. unorm*NaN doesn’t set the d flag. Canonical single/double/double-
extended denormal/double-extended pseudo-denormal/register format denormal encodings are a subset of the floating-
point register format unnormalized numbers.

Note that the Floating-Point Exception fault/trap occurs only if an enabled floating-point exception occurs during the pro-
cessing of the instruction. Hence, setting a flag bit of a status field to 1 in software will not cause an interruptian. The st
tus fields flags are merely indications of the occurrence of floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” to be truncated to the correctly signed zero. Flush-to-
Zero mode can be enabled only if Underflow is disabled. This can be accomplished by disabling all trapsx(fePSR.sf
being set to 1), or by disabling it individually (FPSR.traps.ud set to 1). If Underflow is enabled then it takes priority and
Flush-to-Zero mode is ignored. Note that the software exception handler could examine the Flush-to Zero mode bit and
choose to emulate the Flush-to-Zero operation when an enabled Underflow exception arises.

The FPSR.stu and FPSR.gfi bits will be set to 1 when a result is flushed to the correctly signed zero because of Flush-
to-Zero mode. If enabled, an inexact result exception is signaled.

A floating-point result is rounded based on the instructiggtscompleter and the status fieldise, pc, andrc control

fields. The result’s significand precision and exponent range are determined as described in Table 5-6 "Floating-point
Computation Model Control Definitions". If the result isn’t exact, FPSRcskpecifies the rounding direction (see

Table 5-5).

Table 5-5. Floating-point Rounding Control Definitions

Nearest (or even) — Infinity (down) + Infinity (up) Zero (truncate/chop)
FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected
. FPSR.sfx's | FPSR.sfx’s —
Instruction’s . . Significand | Exponent .
ppc Completer Dyn§m|c Dyna.mlc Precision Range Computational Style
pc Field wre Field
.S ignored 0 24 bits 8 hits IEEE real single
d ignored 0 53 bits 11 bits |EEE real double
.S ignored 1 24 bits 17 bits Register file range, single precision
d ignored 1 53 bits 17 bits Register file range, double precision
none 00 0 24 hits 15 bits IA-32 stack single
none 01 0 N.A. N.A. Reserved
none 10 0 53 bits 15 hits |A-32 stack double
none 1 0 64 bits 15 bits |A-32 double-extended
none 00 1 24 bits 17 bits Register file range, single precision
none 01 1 N.A. N.A. Reserved
none 10 1 53 bits 17 bits Register file range, double precision

HP/Intel IA-64 Floating-point Programming Model 5-5

IA-64 Application ISA Guide 1.0

Table 5-6. Floating-point Computation Model Control Definitions (Continued)

Computation Model Control Fields Computation Model Selected
. FPSR.sfx's | FPSR.sfx’s N
Instruction’s .) Significand | Exponent .
 Completer Dynamic Dynamic Precision Range Computational Style
P P pc Field wre Field g
none 11 1 64 bits 17 bits Register file range, double-extended

precision

not applicablé ignored ignored 24 bits 8 bits A pair of IEEE real singles

not applicablg ignored ignored 64 bits 17 bits Register file range, double-extended
precision

a. For paralel FP instructions which have no .pc completer (e.g., fpma).
b. For non-parallel FP instructions which have no .pc completer (e.g., fmerge).

The trap disable (sfx.td) control bit allows one to easily set up a local |IEEE exception trap default environment. If
FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is set, the FPSR.traps bits are treated as if they
are al set (disabled). Note that FPSR.sf0.td is areserved field which returns O when read.

5.3 Floating-point Instructions

This section describes the 1 A-64 floating-point instructions.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended floating-point real data types,

and the Parallel FP or signed/unsigned integer data type. The addressing modes for floating-point load and store instruc-

tions are the same as for integer load and store instructions, except for floating-point load pair instructions which can have

an implicit base-register post increment. The memory hint options for floating-point load and store instructions are the

same as those for integer load and store instructions. (See “Memory Hierarchy Control and Consistency” on page 4-16.)
Table 5-7 lists the types of floating-point load and store instructions. The floating-point load pair instructions require the
two target registers to be odd/even or even/odd. The floating-point store instrustionss(f d, st f e) require the value

in the floating-point register to have the same type as the store for the format conversion to be correct.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR | Load Pair toFR | Storefrom FR
Single | df s | df ps stfs
Integer/Parallel FR | df 8 | df p8 stf8
Double | df d | df pd stfd
Double-extended | | df e stfe
Spill/fill Idf.fill stf.spill

Unsuccessful speculative loads write a NaTVal into the destination register or registers (see Section 4.4.4). Storing a
NaTVal to memory will cause a Register NaT Consumption fault, except for the spill instrsetiosi | 1).

Saving and restoring floating-point registers is accomplished by the spill and fill instructidnsgi | 1, 1 df . fill)

using a 16-byte memory container. These are the only instructions that can be used for saving and restoring the actual reg-
ister contents since they do not fault on NaTVal. They save and restore all types (single, double, double-extended, register
format and integer or Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6 and Figure 5-7 describe how single precision, double precision, double-extended preci-
sion, and spill/fill data is translated during transfers between floating-point registers and memory.

5-6 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

. integer .
sign exponent bit significand
FR: @ 0
A\\A ‘ T
Memory:
Single-precision Load — normal numbers
sign exponent mgﬁger significand
FR: MFFF @ 0
Memory: 11111401
Single-precision L oad — infinities and NaNs
. integer .
sign exponent bit significand
FR: Q\(‘) @ 0
Memory: Qo0000p| 0 O 0 0
Single-precision Load — zeros
sign exponent mgﬁger significand
FR: uFFM @ 0
Memory: 0000000 | O
Single-precision Load — denormal numbers

Figure 5-4. Memory to Floating-point Register Data Translation —Single Precision

HP/Intel IA-64 Floating-point Programming Model

IA-64 Application ISA Guide 1.0

. integer .
sign exponent bit significand
FR: @ 0
S T
Memory:
Double-precision L oad — normal numbers
sign exponent mgﬁger significand
FR: M'FFF @ 0
Memory: 111112p|m11
Double-precision L oad — infinities and NaNs
. integer .
sign exponent bit significand
FR: Q\(‘) @ 0
Memory: 0000000 | @O0 O 0 0 0 0 0 0
Double-precision Load — zeros
sign exponent mgﬁger significand
FR: Q\om::cm @ 0
Memory: 0000000 | @OC
Double-precision L oad — denormal numbers

Figure 5-5. Memory to Floating-point Register Data Translation —Double Precision

5-8 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

. integer .
sign exponent bit significand
FR:
Memory:
Double-extended-precision Load — normal/unnormal numbers
sign exponent mgﬁger significand
FR: Ox1FFFF D
Memory: 1111110)41111111
Double-extended-precision Load — infinities and NaNs
. integer .
sign exponent bit significand
FR: 0 I
Memory: 0000000 | 0000000¢
Double-extended-precision Load — denormal/pseudo-denormals and zeros
. integer .
sign exponent bit significand
FR: [g 0x1003E 1
Memory:
Integer Load
sign exponent mtt)?tger significand
FR:
vemory ||][LT T T T
Register Fill

Figure 5-6. Memory to Floating-point Register Data Translation —Double Extended, Integer and Fill

HP/Intel IA-64 Floating-point Programming Model 5-9

IA-64 Application ISA Guide 1.0

sign exponent mkgﬁger significand
FR:
Memory: O = AND
Single-precision Store
sign exponent mtt)?atger significand
FR:
. i
\ y
Memory:
Double-precision Store
sign exponent mk';ﬁger significand

= u

Memory:
Integer Store
sign exponent mt';ﬁger significand
FR:
Y i
Memory:

Double-extended-precision Store

sign exponent mt';ﬁger significand

— i

memory:| 0] [0 || o[o[o] [o TJ[J[JIJLJ[JL LI I L]

Register Spill

FR:

Figure 5-7. Floating-point Register to Memory Data Translation

5-10 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For both single and double
memory formats, the byte ordering is identical to the 32-bit and 64-bit integer data types (see Section 3.2.3). The byte-
ordering for the spill/fill memory and double-extended formats is shown in Figure 5-8.

Memory Formats Floating-Point Register Format (82-bit)
Spill/Fill (128-bit) Double-Extended (80-bit) ‘8%1 exp. ‘63 significand 0
LE BE LE BE N \
7 0 7 0 7 0 7 0
00 ol o 0l olse1 se2 el e0|s7|s6|s5|s4|s3|s2|s1|s0
1/s1 10 1/s1 1 e0 \ ¢
2| s2 210 2|2 2| s7
3| s3 30 3/ 3 3| 56 ‘sel e0’| s7|s6|s5|s4|s3|s2|sl|s0O
4 4 410 414 4|85 Double-Extended (80-bit) interpretation
5|s5 5 |se2 5|s5 5/s4
6| s6 6|el 6|6 6|s3
7| s7 71|€e0 7| s/ 7|82
8| e0 8| s/ 8 el 8|sl
9lel 9| s6 9 sel 9/s0
10 |se2 10| 5
1| 0 1 |4
121 0 12 | s3
13|10 13| <2
14,0 14 | s1
15/ 0 15| 0
Figure 5-8. Spill/Fill and Double-Extended (80-bit) Floating-point Memory Formats
5.3.2 Floating-Point Register to/from General Register Transfer Instructions

Thesetf and get f instructions (see Table 5-8) transfer data between floating-point registers (FR) and general registers
(GR). These instructions will translate a general register NaT to/from afloating-point register NaTVal. For all other oper-
ands, the .s and .d variants of the setf and get f instructions translate to/from FR as per Figure 5-4, Figure 5-5 and
Figure 5-7. The memory representation is read from or written to the GR. The .exp and .si g variants of the set f and
get f instructions operate on the sign/exponent and significand portions of afloating-point register, respectively, and their
translation formats are described in Table 5-9 and Table 5-10.

Table 5-8. Floating-point Register Transfer Instructions

Operations GRtoFR | FRtoGR
Single setf.s getf.s
Double setf.d getf.d
Sign and Exponent | setf.exp | getf.exp
Significand/Integer | setf.sig | getf.sig

HP/Intel IA-64 Floating-point Programming Model 5-11

IA-64 Application ISA Guide 1.0

Table 5-9. General Register (Integer) to Floating-point Register Data Translation

General Register Floating-Point Register (.sig) Floating-Point Register (.exp)
Clazs NaT | Integer [Sign | Exponeﬂt | Significand Sign | Exponent_ | Significand
NaT 1 ignore NaTVva NaTva
integers 0 000...00 0 Ox1003E integer integer{17} [integer{16:0} 0x8000000000000000
through
111..11
Table 5-10. Floating-point Register to General Register (Integer) Data Translation
Floating-Point Register Genera Register (.sig) General Register (.exp)
Class Sign Exponent Significand NaT Integer NaT Integer
Narva 0 OXIFFFE | 0.000..00 1 0x0000000000000000 1 OXIFFFE
integers 0 0x1003E 0.000...00 0 significand 0 O0x1003E
or paral- through
lel FP 1111.11
other ignore ignore ignore 0 significand 0 ((sign<<17) | exponent)
5.3.3 Arithmetic Instructions

All of the arithmetic floating-point instructions (except f cvt . xf which isalways exact) have a .sf specifier. Thisindicates

which of the four FPSR’s status fields will both control and record the status of the execution of the instruction (see
Table 5-11). The status field specifies: enabled exceptions, rounding mode, exponent width, precision control, and which

status field’s flags to update. See “Floating-point Status

Register” on page 5-4.

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.Sf Specifier S0

sl .S2

.S3

Status field FPSR.sfO

FPSR.sf1

FPSR.sf2

FPSR.sf3

Most arithmetic floating-point instructions can specify the precision of the result statically by upimgompleter, or

dynamically using thepc field of the FPSR status field. (see Table 5-6). Arithmetic instructions that do not tpve a

completer use the floating-point register file range and precision.

Table 5-12 lists the floating-point arithmetic instructions and Table 5-13 lists the pseudo-operation definitions.

Table 5-12. Floating-point Arithmetic Instructions

Operation Normal FP Mnemonic(s) | Parallel FP Mnemonic(s)
Floating-point multiply and add fma. pc. sf f pma. sf
Floating-point multiply and subtract fms. pc. sf fprs. sf
Floating-point negate multiply and add fnma. pc. sf fpnna. sf
Floating-point reciprocal approximation frcpa. sf fprcpa. sf
Floating-point reciprocal square root approximation | frsqrta. sf fprsgrta. sf

Floating-point compare

fcnp. frel. fctype. sf

fpcnp. frel. sf

Floating-point minimum fmn. sf fpmn. sf
Floating-point maximum f max. sf f pmax. sf
Floating-point absolute minimum fam n. sf f pami n. sf
Floating-point absolute maximum f amax. sf f panmax. sf
Convert floating-point to signed integer fecvt. fx. sf fpevt. fx. sf
fevt.fx.trunc. sf fpevt. fx.trunc. sf
Convert floating-point to unsigned integer fevt. fxu. sf fpevt. fxu. sf
fevt. fxu.trunc. sf fpevt. fxu.trunc. sf
Convert signed integer to floating-point fevt. xf N A

5-12

IA-64 Floating-point Programming Model

HP/Intel

IA-64 Application ISA Guide 1.0

Table 5-13. Floating-point Pseudo-Operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE) f mpy. pc. sf f ma, using FR O for addend

Parallel FP multiplication f prpy. sf f pma, using FR O for addend

Floating-point negate multiplication (IEEE) | f nnpy. pc. sf f nma, using FR 0 for addend

Parallel FP negate multiplication f pnnpy. sf f pnma, using FR O for addend

Floating-point addition (IEEE) fadd. pc. sf f ma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) f sub. pc. sf f ms, using FR 1 for multiplicand

Floating-point negation (IEEE) f nma. pc. sf f nma, using FR 1 for multiplicand and FR 0 for
addend

Floating-point absolute value f abs f mer ge. s, with sign from FR O

Parallel FP absolute value f pabs f prer ge. s, with sign from FR O

Floating-point negate fneg f mer ge. ns

Parallel FP negate f pneg f prer ge. ns

Floating-point negate absolute value f negabs f mer ge. ns, with signfrom FR 0

Parallel FP negate absol ute value f pnegabs f prer ge. ns, with sign from FR 0O

Floating-point normalization fnorm pc. sf f ma, using FR 1 for multiplicand and FR O for
addend

Convert unsigned integer to floating-point fevt. xuf. pc. sf | fma, using FR 1 for multiplicand and FR O for
addend

There are no pseudo-operations for Parallel FP addition, subtraction, negation or normalization since FR 1 does not con-
tain apacked pair of single precision 1.0 values. A parallel FP addition can be performed by first forming apair of 1.0 val-
uesin aregister (using the f pack instruction) and then using the f pma instruction. Similarly, an integer add operation can
be generated by first forming an integer 1 in afloating-point register and then using the xma instruction.

5.34 Non-Arithmetic Instructions

Table 5-14 lists the non-arithmetic floating-point instructions. Thef cl ass instruction is used to classify the contents of a
floating-point register. The f mer ge instruction is used to merge data from two floating-point registers into one floating-
point register. Thef mi x, f sxt, f pack, and f swap instructions are used to manipulate the Parallel FP datain the floating-
point significand. The f and, f andcm f or, and f xor instructions are used to perform logical operations on the floating-
point significand. The f sel ect instruction is used for conditional selects.

The non-arithmetic floating-point instructions always use the floating-point register (82-bit) precision since they do not
have a .pc completer nor a.sf specifier.

Table 5-14. Non-Arithmetic Floating-point Instructions

Operation M nemonic(s)
Floating-point classify fclass. fcrel. fctype
Floating-point merge sign fnerge. s
Parallel FP merge sign fpnerge. s
Floating-point merge negative sign f mer ge. ns
Parallel FP merge negative sign f pnerge. ns
Floating-point merge sign and exponent f ner ge. se
Parallel FP merge sign and exponent f pner ge. se
Floating-point mix left fmx. |
Floating-point mix right fmx.r
Floating-point mix left-right fmx. lr
Floating-point sign-extend left fsxt.l
Floating-point sign-extend right fsxt.r
Floating-point pack f pack
Floating-point swap f swap

HP/Intel IA-64 Floating-point Programming Model 5-13

IA-64 Application ISA Guide 1.0

Table 5-14. Non-Arithmetic Floating-point Instructions (Continued)

Operation M nemonic(s)
Floating-point swap and negate left f swap. nl
Floating-point swap and negate right f swap. nr
Floating-point And fand
Floating-point And Complement fandcm
Floating-point Or for
Floating-point Xor f xor
Floating-point Select fsel ect

5.3.5 Floating-point Status Register (FPSR) Status Field Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one of the alternate status
fields (not FPSR.sf0). After a speculative execution chain has been committed, af chkf instruction can be used to update
the normal flags (FPSR.sf0.flags). This operation will preserve the correctness of the IEEE flags. The f chkf instruction
does this by comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the alternate sta-
tus field indicate the occurrence of an event that corresponds to an enabled floating-point exception in FPSR.traps, or an
event that is not already registered in the FPSR.sfO.flags (i.e., the flag for that event in FPSR.sf0.flags is clear), then the
f chkf instruction causes a Speculative Operation fault. If neither of these cases arise then the f chkf instruction does
nothing.

Thef set ¢ instruction allows bit-wise modification of a status field’s control bits. The FPSR.sf0.controls are ANDed with
a 7-bit immediate and-mask and ORed with a 7-bit immediate or-mask to produce the control bits for the status field. The
fclrf instruction clears all of the status field’s flags to zero.

Table 5-15. FPSR Status Field Instructions

Operation Mnemonic(s)
Floating-point check flags f chkf .sf
Floating-point clear flags fclrf.sf
Floating-point set controls fsetc. sf

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-opemaridstructions. The operands

and result of these instructions are floating-point registersxiffaénstructions ignore the sign and exponent fields of the
floating-point register, except for a NaTVal check. The product of two 64-bit source significands is added to the third 64-
bit significand (zero extended) to produce a 128-bit result. The low and high versions of the instruction select the appro-
priate low/high 64-bits of the 128-bit result, respectively, and write it into the destination register as a canonical integer.
The signed and unsigned versions of the instructions treat the input registers as signed and unsigned 64-bit integers
respectively.

Table 5-16. Integer Multiply and Add Instructions

Integer Multiply and Add Low High
Signed xma. | xma. h
Unsigned xma. | u (pseudo-op) xma. hu

5-14 1A-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

54 Additional IEEE Considerations

54.1 Definition of SNaNs, QNaNs, and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs have a one in the most

significant fractional bit of the significand. This definition of signaling and quiet NaNs easily preserves “NaNness” when
converting between different precisions. When propagating NaNs in operations that have more than one NaN operand, the
result NaN is chosen from one of the operand NaNs in the following priority based on register encoding fi¢flds: first
thenf 2, and lastlyf 3.

5.4.2 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

String to floating-point conversion.

Floating-point to string conversion.

Divide (with help fromf r cpa orf pr cpa instruction).

Square root (with help frorr sqrta orf prsqgrt a instruction).
Remainder (with help frorhr cpa or f pr cpa instruction).
Floating-point to integer valued floating-point conversion.

Correctly wrapping the exponent for single, double, and double-extended overflow and underflow values, as recom-
mended by the IEEE standard.

5.4.3 Additions beyond the IEEE Standard

The fused multiply and addiqa, fns, fnma, fpma, fpns, fpnma) operations enable efficient software divide,
square root, and remainder algorithms.

The extended range of the 17-bit exponent in the register file format allows simplified implementation of many basic
numeric algorithms by the careful numeric programmer.

The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support speculative execution.
Flush-to-Zero mode is an industry standard addition.

The minimum and maximum instructions allow the efficient execution of the common Fortran Intrinsic Functions:
MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as a<b?a:b.

All mixed precision operations are allowed. The IEEE standard suggests that implementations allow lower precision
operands to produce higher precision results; this is supported. The IEEE standard also suggests that implementations
not allow higher precision operands to produce lower precision results; this suggestion is not followed.

An |EEE style quad-precision real type that is supported in software.

HP/Intel IA-64 Floating-point Programming Model 5-15

IA-64 Application ISA Guide 1.0

5-16 1A-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

6 IA-64 Instruction Reference

This chapter describes the function of 1A-64 instruction. The pages of this chapter are sorted alphabetically by assembly
language mnemonic.

6.1 Instruction Page Conventions

The instruction pages are divided into multiple sections as listed in Table 6-1. The first four sections are present on all
instruction pages. The last three sections are present only when necessary. Table 6-2 lists the font conventions which are
used by the instruction pages.

Table 6-1. Instruction Page Description

Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions | EEE floating-point traps

Table 6-2. Instruction Page Font Conventions

Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of arange
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code italic (Operation section) Assembly language field name corresponding to aitalic field listed

in the Format section

In the Format section, register addresses are specified using the assembly mnemonic field names given in the third column
of Table 6-3. For instructions that are predicated, the Description section assumes that the qualifying predicate is true
(except for instructions that modify architectural state when their qualifying predicate is false). The test of the qualifying
predicate isincluded in the Operation section (when applicable).

In the Operation section, registers are addressed using the notation r eg[addr] . fi el d. The register file being accessed is
specified by r eg, and has a value chosen from the second column of Table 6-3. The addr field specifies aregister address
as an assembly language field name or a register mnemonic. For the general, floating-point, and predicate register files
which undergo register renaming, addr is the register address prior to renaming and the renaming is not shown. The
fi el d option specifies a named bit field within the register. If fi el d is absent, then all fields of the register are accessed.
The only exception is when referencing the datafield of the general registers (64-bits not including the NaT bit) where the
notation GR addr] isused. The syntactical differences between the code found in the Operation section and standard C is
listed in Table 6-4.

Table 6-3. Register File Notation

. . . Assembl Indirect
Register File C Notation M nemon?/c AcCess
Application registers AR ar
Branch registers BR b
CPU identification registers CPUID cpuid Y

HP/Intel |IA-64 Instruction Reference 6-1

IA-64 Application ISA Guide 1.0

Table 6-3. Register File Notation (Continued)

. . : Assembl Indirect
Register File C Notation M nemon?/c Access
Floating-point registers FR f
General registers GR r
Performance monitor data registers PMD pmd Y
Predicate registers PR p

Table 6-4. C Syntax Differences

Syntax Function
{msb:Isb}, {hit} Bit field specifier. When appended to a variable, denotes a bit field extending from the most sig-
nificant bit specified by “msb” to the least significant bit specified by “Isb” including bits “msb”
and “Isb”. If “msb” and “Isb” are equal then a single bit is accessed. The second form denotes a

single bit.
u>, U>=, U<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as unsigned.
u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.
u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.
u* Unsigned multiplication. Operands are treated as unsigned.
6.2 Instruction Descriptions

The remainder of this chapter provides a description of 1A-64 instruction.

6-2 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 add
Add
Format: (gp) add rq=ry, 15 register_form Al
(gp) add rq=ro, 13,1 plusl form, register form Al
(gp) add rq=imm,r3 pseudo-op
(gp) adds rq =immyg4, r3 imm14 _form A4
(gp) addl rq=immy,, ra imm22_form A5
Description: The two source operands (and an optional constant 1) are added and the result placed in GR r;. In the reg-
ister form the first operand is GR r,; in theimm_14 form the first operand is taken from the sign extended
immy 4 encoding field; in the imm22_form the first operand is taken from the sign extended imm,, encod-
ing field. In the imm22_form, GR r5 can specify only GRs 0, 1, 2 and 3.
The plusl_form is available only in the register_form (although the equivalent effect in the immediate
forms can be achieved by adjusting the immediate).
The immediate-form pseudo-op chooses the imm14 form or imm22_form based upon the size of the
immediate operand and the valuein GRr3.
Operation: if (PR gp]) {
check_target_register(ry);
if (register_form /1l register form
tnp_src = GRryl;
else if (iml4 form I/l 14-bit imrediate form
trp_src = sign_ext(immy, 14);
el se /1 22-bit imrediate form
trp_src = sign_ext(immy, 22);
tmp_nat = (register_form? CGRry].nat : 0);
if (plusl_form
GRrg =tnmp_src + GRrg + 1
el se
Rrg =tnmp_src + GRrgl;
GRrgjl.nat = tnp_nat || GRrg.nat;
HP/Intel 1A-64 Instruction Reference 6-3

addp4 IA-64 Application ISA Guide 1.0
Add Pointer

Format: (gp) addp4 ry=ry,r3 register_form Al
(gp) addp4 ry=immyy, r3 imm14_form A4

Description: The two source operands are added. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GR r3 are copied to bits {62:61} of the result. This result is placed in GR r4. In the

register_form the first operand is GR r,; in the imm14_form the first operand is taken from the sign
extended imm, 4 encoding field.

32 0 3230 0

GRry: [0 0
6361 2 0

Figure 6-1. Add Pointer

Operation: if (PRgp]) {
check_target _register(rg);

tmp_src = (register_form? GRr,y] : sign_ext(immy, 14));
tmp_nat = (register_form? CGRry].nat : 0);

tmp_res = tnp_src + GRr3;

tnp_res zero_ext (tnp_res{31: 0}, 32);
trp_res{62: 61} = G r3] {31:30};

R rgj =tnp_res;

CGRry]l.nat =tnp_nat || GRrg].nat;

6-4 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 alloc

Allocate Stack Frame

Format:

Description:

Operation:

aloc rq =ar.pfs,i,l,0,r M34

A new stack frame is allocated on the general register stack, and the Previous Function State register
(PFS) is copied to GR r4. The change of frame size is immediate. The write of GR r, and subsequent
instructions in the same instruction group use the new frame. This instruction cannot be predicated.

The four parameters, i (size of inputs), | (size of locals), o (size of outputs), and r (size of rotating) specify
the sizes of the regions of the stack frame.

GR32
Local Output

\J

- sof
sol

Figure 6-2. Stack Frame

The size of the frame (sof) isdetermined by i + | + 0. Note that thisinstruction may grow or shrink the size
of the current register stack frame. The size of the local region (sol) isgiven by i + 1. Thereisno rea dis-
tinction between inputs and locals. They are given as separate operands in the instruction only as a hint to
the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number. If this instruction
attempts to change the size of CFM.sor, and the register rename base registers (CFM.rrb.gr, CFM.rrb.fr,
CFM.rrb.pr) are not al zero, then the instruction will cause a Reserved Register/Field fault.

Although the assembler does not allow illegal combinations of operands for aloc, illegal combinations
can be encoded in the instruction. Attempting to alocate a stack frame larger than 96 registers, or with the
rotating region larger than the stack frame, or with the size of locals larger than the stack frame, will cause
an lllegal Operation fault. An al | oc instruction must be the first instruction in an instruction group. Oth-
erwise, the results are undefined.

If insufficient registers are available to alocate the desired frame al | oc will stall the processor until
enough dirty registers are written to the backing store. Such mandatory RSE stores may cause the data
related faults listed below.

t np_sof i + 1 + o
t mp_sol i +1;
tmp_sor =r u>> 3;
check_target_register_sof (rg, tnp_sof);
if (tnmp_sof u> 96 || r u> tnp_sof || tnp_sol u> tnp_sof)
illegal _operation_fault();
if (tnp_sor != CFM sor &&
(CFMrrb.gr '=0 || CFMrrb.fr =0 || CFMrrb.pr = 0))
reserved_register_field_fault();

al at _frane_update(0, tnp_sof - CFMsof);
rse_new frane(CFM sof, tnp_sof);// Make roomfor new registers; Mandatory RSE
/1 stores can raise faults |isted bel ow

CFM sof = tnp_sof;
CFM sol = tnp_sol;
CFM sor = tnp_sor;
&R r; = AR PFS|;
&R rq .nat = 0;
HP/Intel 1A-64 Instruction Reference 6-5

and IA-64 Application ISA Guide 1.0

Logical And
Format: (gp) and rq=ry, 13 register_form Al
(gp) and rq=immg, r3 imm8_form A3

Description: The two source operands are logically ANDed and the result placed in GR r. In the register_form the first
operand isGR r; in theimm8_form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRry] : sign_ext(inmg 8));
tmp_nat = (register_form? CGRry].nat : 0);

GRrg =tnmp_src & GRr3;
GRrg]l.nat = tnp_nat || GRrg.nat;

6-6 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 andcm

And Complement

Format: (gp) andcm rq=ry, 13 register_form Al
(gp) andcm rq=immg, ry imm8_form A3

Description: The first source operand is logically ANDed with the 1's complement of the second source operand and

the result placed in GR. In the register_form the first operand is &Rin the imm8_form the first oper-
and is taken from thienmg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRry] : sign_ext(inmg 8));
tmp_nat = (register_form? CGRry].nat : 0);

GRrg =tnmp_src & ~&R[rj;
CGRrgj]l.nat = tnp_nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-7

br

IA-64 Application ISA Guide 1.0

Branch

Format:

Description:

(gp) br.btype.bwh.ph.dh targetos ip_relative form Bl

(gp) br.btype.bwh.ph.dh b, = targetos cal_form, ip_relative form B3
br.btype.bwh.ph.dh targetog counted_form, ip_relative_form B2
br.ph.dh target,s pseudo-op

(gp) br.btype.bwh.ph.dh b, indirect_form B4

(gp) br.btype.bwh.ph.dh b; =b, cal_form, indirect_form B5
br.ph.dh b, pseudo-op

A branch calculation is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of a branch logically follows the execution of al previous non-
branch instructions in the same instruction group. On ataken branch, execution begins at slot 0.

Branches can be either | P-relative, or indirect. For | P-relative branches, the target,s operand, in assembly,
specifies a label to branch to. This is encoded in the branch instruction as a signed immediate displace-
ment (imm,4) between the target bundle and the bundle containing this instruction (imm,4 = targetos — IP
>> 4). For indirect branches, the target address is taken froby.BR

Table 6-5. Branch Types

btype Function Branch Condition Target Address
cond omone | Conditional branch Qualifying predicate IP-rel or Indirect
call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect
ia Invoke 1A-32 instruction set| Unconditional Indirect
cloop Counted loop branch Loop count IP-rel
ctop, cexit Mod-scheduled counted logop Loop count and epilog count IP-rel
wtop, wexit | Mod-scheduled while loop Qualifying predicate and epilog count IP-rel

There are two pseudo-ops for unconditional branches. These are encoded like a conditionditigpanch (
= cond), with thegp field specifying PR 0, and with thmvh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has other
effects (such as writing a link register). For the basic branch types, the branch condition is simply the
value of the specified predicate register. These basic branch types are:

« cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

« call: If the qualifying predicate is 1, the branch is taken and several other actions occur:

« The current values of the Current Frame Marker (CFM), the EC application register and the cur-
rent privilege level are saved in the Previous Function State application register.

« The caller’s stack frame is effectively saved and the callee is provided with a frame containing
only the caller’s output region.

« The rotation rename base registers in the CFM are reset to 0.
» Areturn link value is placed in BB;.
« return: If the qualifying predicate is 1, the branch is taken and the following occurs:
» CFM, EC, and the current privilege level are restored from PFS. (The privilege level is restored
only if this does not increase privilege.)
* The caller’s stack frame is restored.
* If the return lowers the privilege, and PSR.Ip is 1, then a Lower-privilege Transfer trap is taken.

« ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect of the branch is to
invoke the 1A-32 instruction set (by setting PSR.is to 1) and begin processing IA-32 instructions at
the virtual linear target address contained intBf31:0}. If the qualifying predicate is not PR 0, an
lllegal Operation fault is raised.

6-8 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 br

The |A-32 target effective address is calculated relative to the current code segment, i.e. EIP{31.0} =
BR by{31:0} — CSD.base. The IA-32 instruction set can be entered at any privilege level, provided
instruction set transitions are not disabled.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an 1A-32_Exception(GPFault) is raised on the target IA-32 instruction. For entry into 16-bit
IA-32 code, if BRb, is not within 64K-bytes of CSD.base a GPFault is raised on the target instruc-
tion. EFLAG.rf is unmodified until the successful completion of the first 1A-32 instruction.
EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.

Software must issuerd instruction before the branch if memory ordering is required between 1A-32
processor consistent and 1A-64 unordered memory references. The processor does not ensure |A-64-
instruction-set-generated writes into the instruction stream are seen by subsequent IA-32 instruction
fetchesbr . i a does not perform an instruction serialization operation. The processor does ensure that
prior writes (even in the same instruction group) to GRs and FRs are observed by the first 1A-32
instruction. Writes to ARs within the same instruction groupras a are not allowed, sinde . i a

may implicitly reads all ARs. If an illegal RAW dependency is present between an AR write and
br.i a, the first IA-32 instruction fetch and execution may or may not see the updated AR value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely on
ALAT values being preserved across an instruction set transition. On entry to 1A-32 code, existing
entries in the ALAT are ignored. If the register stack contains any dirty registers, an lllegal Operation
fault is raised on ther . i a instruction. All registers left in the current register stack frame are left
undefined during I1A-32 instruction set execution. The current register stack frame is forced to zero.
To flush the register file of dirty registers, thieushr s instruction must be issued in an instruction
group proceeding tha . i ai nstruction. To enhance the performance of the instruction set transition,
software can start the 1A-64 register stack flush in parallel with starting the 1A-32 instruction set by 1)
ensuring fushr s is exactly one instruction group before the i a, and 2)br. i a is in the first B-

slot.br . i a should always be executed in the first B-slot with a hint of “static-taken” (default), other-
wise processor performance will be degraded.

Another branch type is provided for simple counted loops. This branch type uses the Loop Count applica-
tion register (LC) to determine the branch condition, and does not use a qualifying predicate:

« cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.

In addition to these simple branch types, there are four types which are used for accelerating modulo-
scheduled loops. Two of these are for counted loops (which use the LC register), and two for while loops
(which use the qualifying predicate). These loop types use register rotation to provide register renaming,
and they use predication to turn off instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while loops, a por-

tion of the prolog stages. In the epilog phase, EC is decremented each time around and, for most loops,
when EC is one, the pipeline has been drained, and the loop is exited. For certain types of optimized,
unrolled software-pipelined loops, the target bf acexit orbr. wexi t is set to the next sequential bun-

dle. In this case, the pipeline may not be fully drained when EC is one, and continues to drain while EC is

zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken or not depends on
the kernel branch condition (LC for counted types, and the qualifying predicate for while types) and on the
epilog condition (whether EC is greater than one or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop) are used when the
loop decision is located at the bottom of the loop body and therefore a taken branch will continue the loop
while a fall through branch will exit the loop. The exit types (cexit and wexit) are used when the loop deci-
sion is located somewhere other than the bottom of the loop and therefore a fall though branch will con-
tinue the loop and a taken branch will exit the loop. The exit types are also used at intermediate points in
an unrolled pipelined loop.

HP/Intel |IA-64 Instruction Reference 6-9

br IA-64 Application ISA Guide 1.0

The modulo-scheduled |oop types are:

« ctop andcexit: These branch types behave identically, except in the determination of whether to
branch or not. Fabr . ct op, the branch is taken if either LC is non-zero or EC is greater than one. For
br. cexi t, the opposite is true. It is not taken if either LC is non-zero or EC is greater than one and is
taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization. During
the prolog and kernel phase, when LC is non-zero, LC counts down. Mhetrop orbr. cexi t is
executed with LC equal to zero, the epilog phase is entered, and EC counts dowhr V¢hep or

br. cexit is executed with LC equal to zero and EC equal to one, a final decrement of EC and a final
register rotation are done. If LC and EC are equal to zero, register rotation stops. These other effects
are the same for the two branch types, and are described in Figure 6-3.

ctop, cexit
unrolled
—= loops)
(prolog/ | '=0 1 0
kernel)

v Y

LC-- | .c=Lc | | Lc=Lc | [Lc=LC]
y y L]

EC = EC | EC- | | EC- | | EC=EC]
]] L] (]

PR[63] = 1 | PR[63]=0| | PR[63]=0]| [PR[63]=0]
L]] L] v

RRB-- | RRB-- | | RRB- | |RRB=RRB|

- | | .
ctop: branch v ctop: fall-thru
cexit: fall-thru cexit: branch

Figure 6-3. Operation of br.ctop and br.cexit

wtop andwexit: These branch types behave identically, except in the determination of whether to
branch or not. Fobr . wt op, the branch is taken if either the qualifying predicate is one or EC is
greater than one. For . wexi t , the opposite is true. It is not taken if either the qualifying predicate is
one or EC is greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register rotation and predicate
initialization. During the prolog phase, the qualifying predicate is either zero or one, depending upon
the scheme used to program the loop. During the kernel phase, the qualifying predicate is one. During
the epilog phase, the qualifying predicate is zero, and EC counts downbwhemp or br . wexi t

is executed with the qualifying predicate equal to zero and EC equal to one, a final decrement of EC
and a final register rotation are done. If the qualifying predicate and EC are zero, register rotation
stops. These other effects are the same for the two branch types, and are described in Figure 6-4.

6-10 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

br
wtop, wexit
==0 (prolog / epilog) (special
unrolled
(prolog/ | == >1 ==0 l0op9)
kernel) (prolog /
epilog)
y Y
EC=EC | Ec- | | EC- | | EC=EC |
L] y L] L]
PR[63] = 0 | PR[63]=0 | | PR[63]=0 | | PR[63]=0 |
v L] L]
RRB-- | RRB- | | RRB- | |RRB=RRB]
B | |]
wtop: branch wtop: fall-thru
wexit: fall-thru wexit: branch

Figure 6-4. Operation of br.wtop and br.wexit

The loop-type branches (br . cl oop, br. ctop, br.cexit, br.w op, and br. wexit) are only allowed in
instruction slot 2 within a bundle. Executing such an instruction in either slot 0 or 1 will cause an Illegal
Operation fault, whether the branch would have been taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly different for
branch instructions. Changes to BRs, PRs, and PFS by non-branch instructions are visible to a subsequent
branch instruction in the same instruction group (i.e., alimited RAW is allowed for these resources). This
alows for alow-latency compare-branch sequence, for example. The norma RAW requirements apply to
the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not alowed if both the reading and writing
instructions are branches. For example, a br. wt op or br. wexi t may not use PR[63] as its qualifying
predicate and PR[63] cannot be the qualifying predicate for any branch preceding a br.wtop or
br . wexi t in the same instruction group.

For dependency purposes, the loop-type branches effectively always write their associated resources,
whether they are taken or not. The cloop type effectively always writes LC. When LC is 0, a cloop branch
leaves it unchanged, but hardware may implement this as are-write of LC with the same value. Similarly,
br.ctopandbr. cexit effectively awayswrite LC, EC, the RRBs, and PR[63]. br . wt op and br . wexi t
effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction Strategy
hints are shown in Table 6-6. Sequential Prefetch hints are shown in Table 6-7. Branch Cache Dealloca-
tion hints are shown in Table 6-8.

Table 6-6. Branch Whether Hint

bwh Completer Branch Whether Hint
spnt Static Not-Taken
sptk Static Taken
dpnt Dynamic Not-Taken
dptk Dynamic Taken

Table 6-7. Sequential Prefetch Hint

ph Completer Sequential Prefetch Hint
few or none Few lines
many Many lines

HP/Intel

IA-64 Instruction Reference

6-11

br IA-64 Application ISA Guide 1.0

Table 6-8. Branch Cache Deallocation Hint

dh Completer Branch Cache Deallocation Hint
none Don't deallocate
clr Deallocate branch information
Operation: if (ip_relative form /1 determ ne branch target

tmp_I P = IP + sign_ext((imp; << 4), 25);
else // indirect_form
tnp_I P = BR byl ;

if (btype!=tia) /I for 1A-64 branches,
tmp_IP =tmp_IP & ~Oxf; /I ignore bottom 4 bits of target

lower_priv_transition = 0;

switch (bt ype) {

case ‘cond’: /I simple conditional branch
tmp_taken=PR[qpl;
break;

case ‘call: /I call saves a return link

tmp_taken=PR[qpl;
if (tmp_taken) {
BR[b;] = IP + 16;

AR[PFS].pfm = CFM; /I ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);

CFM.sof -= CFM.sol; /I new frame size is size of outs
CFM.sol = 0;
CFM.sor =0;
CFM.rrb.gr = 0;
CFM.rrb.fr=0;
CFM.rrb.pr =0;

}

break;

case ‘ret’: /I return restores stack frame

tmp_taken =PR[gp];
if (tmp_taken) {
/I tmp_growth indicates the amount to move logical TOP *up*:
/I tmp_growth = sizeof(previous out) - sizeof(current frame)
/I a negative amount indicates a shrinking stack
tmp_growth = (AR[PFS].pfm.sof - AR[PFS].pfm.sol) - CFM.sof;
alat_frame_update(-AR[PFS].pfm.sol, 0);
rse_fatal = rse_restore_frame(AR[PFS].pfm.sol, tmp_growth, CFM.sof);
if (rse_fatal) {
CFM.sof = 0;
CFM.sol = 0;
CFM.sor =0;
CFM.rrb.gr =0;
CFM.rrb.fr=0;
CFEM.rrb.pr =0;
} else // normal branch return
CFM = AR[PFS].pfm;

rse_enable_current_frame_load();

AR[EC] = AR[PFS].pec;

if (PSR.cpl u< AR[PFS].ppl) { /I ... and restores privilege
PSR.cpl = AR[PFS].ppl;
lower_priv_transition = 1;

6-12 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 br

br eak;

case ‘ia”: /I switch to 1A mode
tmp_taken =1,
if (qp 1= 0)
illegal_operation_fault();
if (AR[BSPSTORE] != AR[BSP])
illegal_operation_fault();
if (PSR.di)
disabled_instruction_set_transition_fault();
PSR.is=1; /I set I1A-32 Instruction Set Mode
CFM.sof = 0; [fforce current stack frame
CFM.sol = 0; [lto zero
CFM.sor =0;
CFM.rrb.gr =0;
CFM.rrb.fr=10;
CFM.rrb.pr =0;
rse_invalidate_non_current_regs();

/I Note the register stack is disabled during I1A-32 instruction set execution
break;

case ‘cloop™: /I simple counted loop
if (slot !=2)
illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] !=0)
AR[LC]--;
break;

case ‘ctop’:
case ‘cexit”: /I SW pipelined counted loop
if (slot !=2)
illegal_operation_fault();
if (btype=="ctop’) tmp_taken = ((AR[LC]!=0) || (AR[EC] u> 1));
if (bt ype == ‘cexit')tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] '=0) {
AR[LC]-;
AR[EC] = AR[EC];
PR[63] = 1;
rotate_regs();
} else if (AR[EC] = 0) {
AR[LC] = AR[LC];
AR[EC]-;
PR[63] = 0;
rotate_regs();
}else {
AR[LC] = AR[LC];
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;
case ‘wtop’:
case ‘wexit’: /I SW pipelined while loop
if (slot !=2)
illegal_operation_fault();
if (btype=="‘wtop’) tmp_taken = (PR][gp] || (AR[EC] u> 1));
if (bt ype ==‘wexit)tmp_taken = |(PR[gp] || (AR[EC] u> 1));

if (PR gp]) {
AR[EC] = AR[EC];
PR[63] = 0;
rotate_regs();

} else if (AR[EC] = 0) {
AR[EC]-;

HP/Intel |IA-64 Instruction Reference 6-13

br IA-64 Application ISA Guide 1.0

PR 63] = O;
rotate regs();
} else {
AREC = ARTEQ;
PR 63] = 0;
CFMrrb.gr = CFMrrb. gr;
CFMrrb.fr = CFMrrb.fr;
CFMrrb.pr = CFMrrb. pr;
}
br eak;

}
if (tnp_taken) {
taken_branch = 1;
IP=tmp_IP; /!l set the new value for IP
if ((PSRit &% uninplenmented_virtual _address(tnp_IP))
[] ('"PSR it && uninpl ement ed_physical _address(tnp_I P)))
uni nmpl ement ed_i nstruction_address_trap(lower_priv_transition,tnp_|IP);
if (lower_priv_transition & PSR | p)
| ower _privilege_transfer_trap();
if (PSR th)
taken_branch_trap();

6-14 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 break

Break

Format: (gp) break immyq pseudo-op
(gp) break.i immy, i_unit_form 119
(gp) break.b immy, b _unit form B9
(gp) break.m immy m_unit form M37
(gp) break.f immyy f_unit_form F15
(gp) break.x immg, X_unit_form X1

Description: A Break Instruction fault is taken. For thei_unit_form, f_unit_form and m_unit_form, the value specified
by imm,, is zero-extended and placed in the Interruption Immediate control register (11M).

For the b_unit_form, imm,, isignored and the value zero is placed in the Interruption Immediate control
register (11IM).

For the x_unit_form, the lower 21 bits of the value specified by immg, is zero-extended and placed in the
Interruption Immediate control register (IIM). The L slot of the bundle contains the upper 41 bits of

immep.

This instruction has five forms, each of which can be executed only on a particular execution unit type.
The pseudo-op can be used if the unit type to execute on is unimportant.

Operation: if (PR gp]) {
if (b_unit_form
imediate = 0
else if (x_unit _form
i nmredi ate = zero_ext (imry, 21);
else // i_unit_form|| munit_form|| f_unit_form
i mredi ate = zero_ext (/mp;, 21)

break_i nstruction_faul t (i medi ate);

HP/Intel |IA-64 Instruction Reference 6-15

chk IA-64 Application ISA Guide 1.0

Speculation Check

Format: (gp) chk.s ro, targetog pseudo-op
(gp) chk.s.i ro, targetos control_form, i_unit_form, gr_form 120
(gp) chk.sm r,, target,s control_form, m_unit_form, gr foom M20
(gp) chk.s f,, targetyg control_form, fr foom M21
(gp) chk.aaclr rq, targetys data form, gr foom M22
(gp) chk.aaclr fq, targetos data form, fr foom M23

Description: The result of a control- or data-speculative calculation is checked for success or failure. If the check fails,
abranch to target,s is taken.

In the control_form, success is determined by a NaT indication for the source register. If the NaT bit cor-
responding to GR r, is 1 (in the gr_form), or FR f, contains aNaTVal (in the fr_form), the check fails.

In the data form, success is determined by the ALAT. The ALAT is queried using the general register
specifier rq (in the gr_form), or the floating-point register specifier f; (in the fr_form). If no ALAT entry
matches, the check fails. An implementation may optionally cause the check to fail independent of
whether an ALAT entry matches.

The target,s operand, in assembly, specifies a label to branch to. This is encoded in the instruction as a
signed immediate displacement (imm,4) between the target bundle and the bundle containing this instruc-
tion (imm,, = targetos — IP >> 4).

The control_form of this instruction for checking general registers can be encoded on either an I-unit or an
M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally invalidated,
based on the value of tlaelr completer (See Table 6-9).

Table 6-9. ALAT Clear Completer

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry
nc Don't invalidate

Note that if theclr value of theaclr completer is used and the check succeeds, the matching ALAT entry is
invalidated. However, if the check fails (which may happen even if there is a matching ALAT entry), any
matching ALAT entry may optionally be invalidated, but this is not required. Recovery code for data spec-
ulation, therefore, cannot rely on the absence of a matching ALAT entry.

6-16 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 chk

Operation: if (PR gp]) {

if (control _form {

if (fr_form&& (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0)))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

check_type = gr_form? CHKS GENERAL : CHKS FLOAT;
fail = (gr_formé&x GRry.nat) || (fr_form&& FR f;] == NATVAL);

} else { // data_form
reg_type = gr_form? GENERAL : FLOAT;
alat_index = gr_form? r; : (data_form? f;: fj);

check_type = gr_form? CHKA GENERAL : CHKA FLOAT;
fail = lalat_cnp(reg_type, alat_index);

}
if (fail) {
taken_branch = 1;
IP = 1P + sign_ext((imp; << 4), 25);
if ((PSRit &% uninplenented virtual address(IP))
|| (!'PSR it && uninplenmented_physical _address(I1P)))
uni npl ement ed_i nstructi on_address_trap(0, |P);
if (PSR th)
taken_branch_trap();

}
if (!fail & data_form&.& (aclr ==‘clr))
alat_inval_single_entry(reg_type, alat_index);

HP/Intel |IA-64 Instruction Reference 6-17

clrrrb IA-64 Application ISA Guide 1.0

Clear RRB

Format: clrrrb al_form B8
clrrrb.pr pred form B8

Description: Inthe all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are cleared.
In the pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is cleared.

Thisinstruction must be the last instruction in an instruction group, or an Illegal Operation fault is taken.

This instruction cannot be predicated.

Operation: if (!'followed by stop())
illegal _operation_fault();
if (all_form {
CFMrrb.gr = 0;
CFMrrb.fr = 0;
CFMrrb. pr = 0;
} else { // pred_form

CFMrrb.pr = 0
}

6-18 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

cmp

Compare

Format:

(gp) cmp.crel.ctype py, Py =Ty, I3 register_form A6

(gp) cmp.crel.ctype py, pp =immg, r3 imm8_form A8
(gp) cmp.crel.ctype py, p, =10, r3 parallel_inequality_form A7
(gp) cmp.crel.ctype pq, pp=r3, 10 pseudo-op

Description: The two source operands are compared for one of ten relations specified by crel. This produces a boolean
result whichis 1 if the comparison conditionistrue, and O otherwise. Thisresult iswritten to the two pred-
icate register destinations, p; and p,. The way the result is written to the destinations is determined by the
compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the comparison.
The normal type simply writes the compare result to one target, and the complement to the other. The par-
alel types update the targets only for a particular comparison result. This alows multiple simultaneous
OR-type or multiple simultaneous AND-type compares to target the same predicate register.
The unc type is special in that it first initializes both predicate targets to 0, independent of the qualifying
predicate. It then operates the same as the normal type. The behavior of the compare typesis described in
Table 6-10. A blank entry indicates the predicate target is left unchanged.
Table 6-10. Comparison Types
PR[gp]==1
ctvpe Pseudo- PR[qp]==0 result==0, result==1, Oneor More
o op of No Source NaTs No Source NaTs Source NaTs
PR[p] | PR[p] | PR[pj] | PRIp] | PR[p] | PR[p] | PR[pj | PRIp,|
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm | or.andcm 0 1

In the register_form the first operand is GR r; in the imm8_form the first operand is taken from the sign
extended immg encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
paralel _inequality form isonly used when the compare type is one of the parallel types, and the relation
isan inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

Of the ten relations, not al are directly implemented in hardware. Some are actually pseudo-ops. For
these, the assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation. For some of the pseudo-op compares in the imm8_form, the
assembler subtracts 1 from the immediate value, making the allowed immediate range sightly different.
Of the six parallel compare types, three of the types are actually pseudo-ops. The assembler simply uses
the negative relation with an implemented type. The implemented relations and how the pseudo-ops map
onto them are shown in Table 6-11 (for normal and unc type compares), and Table 6-12 (for parallel type
compares).

HP/Intel

IA-64 Instruction Reference 6-19

cmp IA-64 Application ISA Guide 1.0
Table 6-11. 64-bit Comparison Relations for Normal and unc Compares
Compare : . . :
crel Relation Register Formisa ImmediateFormis Immediate Range
Pseudo-op of a Pseudo-op of
(arel b)
eq a== -128 .. 127
ne al=b eq pl - p2 eg pl o pz -128 .. 127
It a<b -128 .. 127
le a<=b It b - It -1 -127 .12
signed a Py < P2 & 8
gt a>b It aob It &l p;opy|-127..128
ltu | a<b 0..127, 2°*-128.. 2°*1
<: > > . 64_ x 64
leu | a<=b unsigned tu aeb ppopy|ltu &l 1..128, 264 127 264
gtu | a>b ltu a~b ltu al p;opy | 1..128 2°%-127..2
geu | a>=b Itu Py o Py | Itu Py - py | 0..127, 264128 .. 2541
The parallel compare types can be used only with arestricted set of relations and operands. They can be
used with equal and not-equal comparisons between two registers or between aregister and an immediate,
or they can be used with inequality comparisons between aregister and GR 0. Unsigned relations are not
provided, since they are not of much use when one of the operandsis zero. For the parallel inequality com-
parisons, hardware only directly implements the ones where the first operand (GR r,) is GR 0. Compari-
sons where the second operand is GR 0 are pseudo-ops for which the assembler switches the register
specifiers and uses the opposite relation.
Table 6-12. 64-bit Comparison Relations for Parallel Compares
Compare . .
crel Relation Register Form Isa Immediate Range
Pseudo-op of
(arel b)
eq | a== -128 .. 127
ne |al=b -128.. 127
It 0<b
It a<o0 ot aob
le 0<=b
I = >
© a<=0 signed g a-b no immediate forms
ot 0>b
ot a>0 It aob
ge | 0>=b
ge | a>=0 le aob
6-20 1A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 cmp

if (PRap]) {

if (p1 == p2)
illegal operation fault();

tmp_nat = (register_form? GR{ry.nat : 0) || GRrg.nat;
if (register_forn
tnp_src = Rrj;
else if (im8 form
trp_src = sign_ext(inmmg, 8);
else // parallel _inequality_form

tnp_src = 0;
if (crel =='eq) tmp_rel=tmp_src == GR[rsl;
else if crel =='ne’) tmp_rel =tmp_src = GR[ral;
else if (crel =='It) tmp_rel =lesser_signed(tmp_src, GR[r3l);
else if (crel =='"le’) tmp_rel = lesser_equal_signed(tmp_src, GR[r3l);
else if crel =='gt) tmp_rel = greater_signed(tmp_src, GR[r3l);
else if (crel =='ge’) tmp_rel = greater_equal_signed(tmp_src, GR[r3l);
else if (crel =="ltv’) tmp_rel = lesser(tmp_src, GR[r3l);
else if (crel =='lew’) tmp_rel =lesser_equal(tmp_src, GR[r3l);
else if (crel =='gtu’) tmp_rel = greater(tmp_src, GR[r3l);
else tmp_rel = greater_equal(tmp_src, GR[r3l); Il 'geu’
switch (ctype){
case ‘and”: /I and-type compare
if (tmp_nat || 'tmp_rel) {
PR[ps] =0;
PR[p2] =0;
break;
case ‘or I/ or-type compare
if (tmp_nat && tmp_rel) {
PR[ps] =1,
PR[p2] = 1;
break;

case ‘or.andcm’”:
if (tmp_nat && tmp_rel) {
PR[ps] =1,
PR[p2] = 0;

break;
case ‘unc’
default:
if (tmp_nat) {
PR[ps] =0;
PR[p2] = 0;
}else{
PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;

break;
}else{
if (ctype=="unc’){
if(pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;
}

I or.andcm-type compare

/I unc-type compare
/I normal compare

HP/Intel |IA-64 Instruction Reference

6-21

cmp4 IA-64 Application ISA Guide 1.0

Compare Word

Format: (gp) cmp4.crel.ctype pq, pp =Tty I3 register_form A6
(gp) cmp4.crel.ctype pq, pp =immg, ra imm8_form A8
(gp) cmp4.crel.ctype pq, po =10, r3 paralel_inequality form A7
(gp) cmp4.crel.ctype pq, pp =r3, 10 pseudo-op

Description: Theleast significant 32 hits from each of two source operands are compared for one of ten relations spec-
ified by crel. This produces a boolean result which is 1 if the comparison condition is true, and O other-
wise. This result is written to the two predicate register destinations, p; and p,. The way the result is
written to the destinations is determined by the compare type specified by ctype. See the Compare instruc-
tion and Table 6-10 on page 6-19.

In the register_form the first operand is GR r; in the imm8_form the first operand is taken from the sign
extended immg encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
paralel_inequality form isonly used when the compare type is one of the parallel types, and the relation
isan inequality (>, >=, <, <=). See the Compare instruction and Table 6-12 on page 6-20.

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops. See the
Compare instruction and Table 6-11 and Table 6-12 on page 6-20. The range for immediates is given

bel ow.
Table 6-13. Immediate Range for 32-bit Compares
crel Compz:rrilRt;a)latlon Immediate Range
eq a== -128 .. 127
ne al=b -128 .. 127
It a<b -128 .. 127
le a<=b signed -127..128
gt a>b -127 .. 128
ge a>=b -128 .. 127
Itu a<b 0..127, 2°4-128 .. 2°%-1
leu a<=b unsigned 1..128, 2%2.127.. 2%
gtu a>b 1..128, 232127 .. 2%
geu a>=b 0..127, 232128 .. 2%21
Operation: if (PRgp]) {
if (p1 == p2)

illegal _operation_fault();
tmp_nat = (register_form? GR{ry.nat : 0) || GRrg.nat;

if (register_forn

tnp_src = Rrj;
else if (im8_form

trp_src = sign_ext(inmmg, 8);
else // parallel_inequality_form

tnmp_src = 0;
if (crel =='eq’) tmp_rel =tmp_src{31:0} == GR][r 5]{31:0};
else if (crel =='ne’) tmp_rel = tmp_src{31:0} I= GR[r 5]{31:0};
else if (crel =='It)
tmp_rel = lesser_signed(sign_ext(tmp_src, 32), sign_ext(GR][r 3, 32));
else if (crel =='le")
tmp_rel = lesser_equal_signed(sign_ext(tmp_src, 32), sign_ext(GR[r 3], 32));

else if (crel =='gt)

6-22 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

cmp4

tnp_rel = greater_signed(sign_ext(tnp_src, 32),
else if (crel =='ge)

tmp_rel = greater_equal_signed(sign_ext(tmp_src,
else if (crel =="ltv)

tmp_rel = lesser(zero_ext(tmp_src, 32), zero_ext(GR[
else if (crel =='lew)

tmp_rel = lesser_equal(zero_ext(tmp_src, 32), zero_ext(GR[
else if (crel =='gtu)

tmp_rel = greater(zero_ext(tmp_src, 32), zero_ext(GR[
else /I 'geu’

tmp_rel = greater_equal(zero_ext(tmp_src, 32), zero_ext(GR[

switch (ctype){
case ‘and”:
if (tmp_nat || 'tmp_rel) {
PR[p4] =0;
PR[p2] = 0;

break;
case ‘or’:
if ('tmp_nat && tmp_rel) {
PR[ps]=1;
PR[p2] =1

break;

sign_ext(GRrg3, 32));
32), sign_ext(GR[r3], 32));
r3l, 32));
r3l, 32));
r 3, 32));
r3l, 32));

/I and-type compare

/I or-type compare

case ‘or.andcm’: I/ or.andcm-type compare

if ('tmp_nat && tmp_rel) {
PR[ps]=1;
) PR[p2] = 0;
break;
case ‘unc’
default:
if (tmp_nat) {
PR[p;] = 0;
PR[p2] = 0;
}else {
PR[p4] =tmp_rel;
PR[pJ] = tmp_rel;
}

break;

}else {
if (ctype=='unc’){
if(pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;

/I unc-type compare
// normal compare

HP/Intel |IA-64 Instruction Reference

6-23

cmpxchg IA-64 Application ISA Guide 1.0

Compare And Exchange
Format: (gp) cmpxchgsz.sem.ldhint rq = [rg], r,, ar.ccv M16

Description: A value consisting of sz bytesis read from memory starting at the address specified by the value in GR r5.
The value is zero extended and compared with the contents of the cnpxchg Compare Value application
register (AR[CCV]). If the two are equal, then the least significant sz bytes of the valuein GR r, are writ-
ten to memory starting at the address specified by the value in GR r3. The zero-extended value read from
memory is placed in GR r; and the NaT bit corresponding to GR r is cleared.

The values of the sz completer are given in Table 6-14. The sem compl eter specifies the type of semaphore
operation. These operations are described in Table 6-15.

Table 6-14. Memory Compare and Exchange Size

szCompleter | Bytes Accessed
1 1
2 2
4 4
8 8

Table 6-15. Compare and Exchange Semaphore Types

sem Ordering

Completer | Semantics Semaphore Oper ation

The memory read/write is made visible prior to all subsequent data
memory accesses.

The memory read/write is made visible after all previous data memory
accesses.

acq Acquire

rel Release

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

The memory read and write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the Idhint completer specifies the locality of the memory access. The values of the Idhint
completer are given in Table 6-28 on page 6-102. Locality hints do not affect program functionality and

may be ignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-16
for details.

6-24 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 cmpxchg

Operation:

it (PR gp]) {

check_target_register(r;, SEMAPHORE);

if (Rrg.nat || GRrj.nat)
regi ster_nat _consunpti on_faul t (SEMAPHORE) ;

paddr = tlb_translate(GR r3, sz, SEMAPHCRE, PSR cpl, &mattr, & np_unused);

if (!ma_supports_senmaphores(mattr))
unsupported_data_r ef erence_faul t (SENMAPHORE, CRrg]);

if (sem==‘acq){
val = mem_xchg_cond(AR[CCV], GR[r 5], paddr, sz, UM.be, mattr, ACQUIRE,

I dhi nt);
Yelse {// ‘rel
val = mem_xchg_cond(AR[CCV], GR[r 5], paddr, sz, UM.be, mattr, RELEASE,
I dhi nt);
val = zero_ext(val, 57*8);
if (AR[CCV] == val)
alat_inval_multiple_entries(paddr, s2);
GR(r ;] = val
GR[r 4].nat = 0;
HP/Intel 1A-64 Instruction Reference 6-25

CzX

IA-64 Application ISA Guide 1.0

Compute Zero Index

Format:

Description:

Operation:

(ap) czx1.l ry=r3
(gp) czx1.r ry=rs
(ap) czx2l ry=r3
(ap) czx2.r ry=rs

one_byte form, left form 129
one_byte form, right_form 129
two_byte form, left_form 129
two_byte form, right_form 129

GR r3isscanned for a zero element. The element is either an 8-bit aigned byte (one_byte form) or a 16-
bit aligned pair of bytes (two_byte form). The index of the first zero element is placed in GR 4. If there
are no zero elementsin GR r, adefault value is placed in GRr4. Table 6-16 gives the possible result val-
ues. Intheleft_form, the source is scanned from most significant element to least significant element, and
intheright_form it is scanned from least significant element to most significant element.

Table 6-16. Result Ranges for czx

Size Element Range of Result if Default Result if No
Width Zero Element Found Zero Element Found
1 8 hit 0-7 8
2 16 bit 0-3 4
if (PREgp]) {

check_target_register(ry);

if (one_byte form {

if (left_form { /'l scan fromnost significant down
if ((GR r3] & Oxff00000000000000) == 0) GRr] = 0;
else if ((GRrg & Ox00ff000000000000) == 0) CGRrq = 1,
else if ((GRrz & 0x0000ff0000000000) == 0) GRr4] = 2;
else if ((GRrg & 0x000000ff00000000) == 0) CRr; = 3;
else if ((GRrgz & 0x00000000ff000000) == 0) CR rq = 4
elseif ((GRrz & 0x0000000000ff0000) == 0) GRr4] = 5;
elseif ((GRrgzg & 0x000000000000ff00) == 0) CRr;] = 6;
else if ((GRrg & 0x00000000000000ff) == 0) CGRrq =7,
else Rrq = 8;

} else { // right_form scan fromleast significant up
if ((&R rz & 0x00000000000000ff) == 0) &R r4 = 0;
elseif ((GRrz & 0x000000000000ff00) == 0) GRr4] = 1;
else if ((GRrg & 0x0000000000ff0000) == 0) CRr; = 2;
else if ((GRrg & 0x00000000ff000000) == 0) CGRrq = 3;
else if ((GRrz & 0x000000ff00000000) == 0) G r4] = 4;
else if ((GRrgz & 0x0000ff0000000000) == 0) CRr;] = 5;
else if ((GRrg & Ox00ff000000000000) == 0) CGR rq = 6;
elseif ((GRrz & Oxff00000000000000) == 0) CGRr4] = 7;
else GRrq = 8;

} else { // two_byte form

if (left_form { /1 scan fromnost significant down
if ((CR rz & Oxffff000000000000) == 0) GR[r4] = 0;
else if ((GRrz & 0x0000ffff00000000) == 0) G r4] = 1;
else if ((GRrg & 0x00000000ffff0000) == 0) CRr; = 2;
else if ((GRrg & 0x000000000000ffff) == 0) GRrq = 3;
else Rrq = 4

} else { // right_form scan fromleast significant up
if ((CR rz] & 0x000000000000ffff) == 0) GRr4; = 0;
elseif ((GRrz & 0x00000000ffff0000) == 0) GRr4 = 1;
else if ((GRrg & 0x0000ffff00000000) == 0) CRr; = 2;
else if ((CRrg & Oxffff000000000000) == 0) CRrq = 3;
else Rrq = 4

}

}
GRrgjl.nat = GR[rg.nat;

6-26

IA-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 dep

Deposit

Format: (ap) dep rq=r, rs, posg, leny merge _form, register_form 115
(gp) dep rq =immy, r, poss, leng merge_form, imm_form 114
(ap) dep.z rq=r,, posg, leng zero_form, register_form 112
(ap) dep.z rq =immg, posg, leng zero_form, imm_form 113

Description: Inthemerge form, aright justified bit field taken from the first source operand is deposited into the value
in GR r3 at an arbitrary bit position and the result is placed in GR ry. In the register_form the first source
operand is GR ro; and in theimm_form it is the sign-extended value specified by immy (either all ones or
all zeroes). The deposited bit field begins at the bit position specified by the posg immediate and extends
to the left (towards the most significant bit) a number of bits specified by thelen immediate. Note that len
has arange of 1-16 in the register_form and 1-64 in the imm_form. The posg immediate has arange of 0 to
63.

Inthe zero_form, aright justified bit field taken from either thevaluein GR r5 (in the register_form) or the
sign extended value in immg (in the imm_form) is deposited into GR rq and all other bitsin GR r; are
cleared to zero. The deposited bit field begins at the bit position specified by the pos; immediate and
extends to the left (towards the most significant bit) a number of bits specified by the len immediate. The
len immediate has arange of 1-64 and the posg immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + posg > 64, the most
significant len + posg — 64 bits of the deposited bit field are truncated. l[Ehémmediate is encoded as
len minus 1 in the instruction.

The operation ofiep t = s, r, 36, 16 isillustrated in Figure 6-5.

52 36 0 16 0
GR: GR s:

v

52 36 0

GR t:

Figure 6-5. Deposit Example

Operation: if (PRgp]) {
check_target _register(ry);

if (immforn {

tmp_src = (merge_form? sign_ext(imm,1) : sign_ext(imyg, 8));
tmp_nat = merge_form? GR{rs].nat : O;
tmp_len = leng ;
} else { Il register_form
tnp_src = R rj;
tmp_nat = (merge_form? GRr3.nat : 0) || GRrg.nat;
tmp_len = merge_form? len, : leng ;

if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

if (merge_forn

Rrg = Rrgl;
else // zero form
XRrg =0

R rql{(posg + tmp_len - 1): posgt = tnp_src{(tnp_len - 1):0};
GRrg].nat = tnp_nat;

HP/Intel |IA-64 Instruction Reference 6-27

extr

IA-64 Application ISA Guide 1.0

Extract

Format:

Description:

Operation:

(ap) extr rq =r3, posg, leng signed form 111
(gp) extr.u rq=rz, posg, leng unsigned form 111

A field is extracted from GR r3, either zero extended or sign extended, and placed right-justified in GR r.
The field begins at the bit position given by the second operand and extends leng bits to the |eft. The bit
position where the field begins is specified by the posg immediate. The extracted field is sign extended in
the signed form or zero extended in the unsigned form. The sign is taken from the most significant bit of
the extracted field. If the specified field extends beyond the most significant bit of GR r3, the signistaken
from the most significant bit of GR r3. The immediate value leng can be any number in the range 1 to 64,
and is encoded as leng-1 in the instruction. The immediate value posg can be any value in the range 0 to
63.

The operationof extr t = r, 7, 50 isillustrated in Figure 6-6.

63 56 7 0
GRr:

GRt: sign
63 49 0

Figure 6-6. Extract Example

if (PREgp]) {

check_target_register(ry);
tmp_len = [eng

if (posg + tnp_len u> 64)
tmp_len = 64 - posg;

i f (unsigned_form

R rg] = zero_ext(shift_right_unsigned(GRr3], pos6), tnp_len);
else // signed_form

R rg] = sign_ext(shift_right_unsigned(GRr3], pos6), tnp_len);

CRrgj].nat = GR[rg.nat;

6-28 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fabs

Floating-Point Absolute Value
Format: (gp) fabs fy =13 pseudo-op of: (qp) fmerge.s f; =10, f5

Description: The absolute value of the valuein FR f5 is computed and placed in FR f;.
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 6-49.

HP/Intel |IA-64 Instruction Reference 6-29

fadd

IA-64 Application ISA Guide 1.0

Floating-Point Add

Format: (gp) fedd.pc.sf f; =fa, fo

pseudo-op of: (qp) fmapc.sf f; =fa, f1, f,

Description: FR f3 and FR f, are added (computed to infinite precision), rounded to the precision indicated by pc (and
possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR

f1. If either FR f3 or FR fyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodpésare given in Table 6-17. The mnemonic valuessf@re given
in Table 6-18. For the encodings and interpretation of the status foeldige, andrc, refer to Table 5-5

and Table 5-6 on page 5-5.

Table 6-17. Specified pc Mnemonic Values

pc M nemonic

Precision Specifed

S
d
none

single
double
dynamic
(i.e., use pc valuein status
field)

Table 6-18. sf Mnemonic Values

sf Mnemonic Status Field Accessed

.S0 or none sfO

sl sfl

.S2 sf2

.s3 sf3
Operation: See “Floating-Point Multiply Add” on page 6-47.

6-30 |A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 famax

Floating-Point Absolute Maximum
Format: (gp) famax.sf fq =f,, f3 F8

Description: The operand with the larger absolute value is placed in FR f;. If the magnitude of FR f, equal's the magni-
tude of FR f3, FR f; gets FR f5.

If either FR f, or FR fzisaNaN, FR f; gets FR f5.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_ fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

trmp_right = fp_reg_read(FR f3]);

tmp_left = fp_reg_read(FR f3]);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
FRIf4] = tnp_bool res ? FRIf) : FR f3];

fp_update _fpsr(sf, tnp_fp_env);
}

fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-31

famin IA-64 Application ISA Guide 1.0

Floating-Point Absolute Minimum
Format: (gp) faminsf fy =15, f5 F8

Description: The operand with the smaller absolute value is placed in FR f;. If the magnitude of FR f, equals the mag-
nitude of FR f3, FR f; gets FR fa.

If either FR f, or FR fzisaNaN, FR f; gets FR f5.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR ;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_left = fp_reg_read(FR f,]);

trmp_right = fp_reg_read(FR f3]);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
FRIf;] = tnp_bool _res ? FRIf, : FR f3];

fp_update_fpsr(sf, tnp_fp_env);
}

fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

6-32 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fand

Floating-Point Logical And
Format: (gp) fand fy =15, f3 Fo

Description: The bit-wise logical AND of the significand fields of FR f, and FR f5 is computed. The resulting value is
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
FR{f4].significand = FR{f,].significand & FR{ f3].significand,
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(fy);
}

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-33

fandcm IA-64 Application ISA Guide 1.0

Floating-Point And Complement
Format: (gp) fandem fy =1y, fa Fo

Description: The bit-wise logical AND of the significand field of FR f, with the bit-wise complemented significand
field of FR f5is computed. The resulting value is stored in the significand field of FR f;. The exponent
field of FRf is set to the biased exponent for 2.08% (0x1003E) and the sign field of FR f, is set to positive
(0).

If either FR f, or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
FRIf4].significand = FR{f,].significand & ~FR f3] . significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(fy);
}

FP Exceptions: None

6-34 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fc

Flush Cache
Format: (gp) fc ra M28
Description: The cache line associated with the address specified by the value of GRr3 isinvalidated from all levels of
the processor cache hierarchy. The invalidation is broadcast throughout the coherence domain. If, at any
level of the cache hierarchy, the line is inconsistent with memory it is written to memory before invalida-
tion.
Theline size affected is at least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a
larger region.
This instruction follows data dependency rules; it is ordered with respect to preceding and following
memory references to the same line. f ¢ has data dependencies in the sense that any prior stores by this
processor will be included in the data written back to memory. f ¢ is an unordered operation, and is not
affected by a memory fence (nf) instruction. It is ordered with respect to the sync. i instruction.
Operation: if (PRgp]) {
itype = NON_ACCESS| FQ READ,
if (R rg.nat)
regi ster_nat _consunption_faul t(itype);
tnp_paddr = tlb_transl ate_nonaccess(GR[rg, itype);
mem f | ush(t np_paddr);
}
HP/Intel 1A-64 Instruction Reference 6-35

fchkf IA-64 Application ISA Guide 1.0

Floating-Point Check Flags
Format: (gp) fchkf.sf target,s F14

Description: The flags in FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags set in
FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are not set
in FPSR.s0.flags, then a branch to target,s is taken.

The target,s operand, specifies alabel to branch to. Thisis encoded in the instruction as a signed immedi-
ate displacement (imm,,) between the target bundle and the bundle containing this instruction (immyq =
target25 — P >> 4)

The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
switch (sf) {

case 'sO”
tmp_flags = AR[FPSR].sf0.flags;
break;

case ‘s1”
tmp_flags = AR[FPSR].sf1.flags;
break;

case 's2”
tmp_flags = AR[FPSR].sf2.flags;
break;

case ‘s3"
tmp_flags = AR[FPSR].sf3.flags;
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {
if (check_branch_implemented(FCHKF)) {
taken_branch =1,
IP = IP + sign_ext((i mmpy << 4), 25);
if (PSR.it && unimplemented_virtual_address(IP))
|| (PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);
if (PSR.th)
taken_branch_trap();
}else
speculation_fault(FCHKF, zero_ext(i mpy, 21));

}

FP Exceptions: None

6-36 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fclass

Floating-Point Class
Format: (gp) fclass.ferel.fetype pq, po = f), felassy F5

Description: The contents of FR f, are classified according to the fclassy completer as shown in Table 6-20. This pro-
duces a boolean result based on whether the contents of FR f, agrees with the floating-point number for-
mat specified by fclassy, as specified by the fcrel completer. This result is written to the two predicate
register destinations, p; and p,. The result written to the destinations is determined by the compare type
specified by fctype.

The allowed types are Normal (or none) and unc. See Table 6-21 on page 6-40. The assembly syntax
allows the specification of membership or non-membership and the assembler swaps the target predicates
to achieve the desired effect.

Table 6-19. Floating-point Class Relations

ferel Test Relation
m FRf, agrees with the pattern specifiedfblassg (is @ member)
nm FRf, does not agree with the pattern specifieddBsssg (is not a member

A number agrees with the pattern specified by fclassg if:

« the number is NaTVal arfdlassq {8} is 1, or
+ the number is a quiet NaN afallassg {7} is 1, or
+ the number is a signaling NaN afotbssg {6} is 1, or

+ the sign of the number agrees with the sign specified by one of the two low-orderftliéssgf and
the type of the number (disregarding the sign) agrees with the number-type specified by the next 4
bits offclassg, as shown in Table 6-20.

Note: afclassy of Ox1FF is equivalent to testing for any supported operand.
The class names used in Table 6-20 are defined in Table 5-2 on page 5-2.

Table 6-20. Floating-point Classes

fclassy | Class M nemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @qgnan
0x040 Signaling NaN| @snan
or the OR of the following two caseps
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following 4
cases
0x004 Zero @zero
0x008 Unnormalized| @unorm
0x010 Normalized @norm
0x020 Infinity @inf

HP/Intel |IA-64 Instruction Reference 6-37

fclass IA-64 Application ISA Guide 1.0

Operation: if (PRgp]) {
if (p1 == p2)
illegal operation fault();

if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

((fclassg{0} && 'FRf,].sign || fclassg{1l} && FR f,].sign)
&% ((fclassg{2} && fp_is_zero(FRfJ]))]||
(fclassg{3} && fp_is_unorn(FRf;])) ||
(fclassg{4} & fp_is_normal (FRIf5])) ||
(fclassg{5} && fp_is_inf(FRfJ]))
)

)
|| (fclassg{6} &% fp_is_snan(FR{f;]))
|| (fclassg{7} && fp_is_qgnan(FR{f;]))
|| (fclasso{8} &% fp_is_natval (FR[f,]));

tnp_rel

tmp_nat = fp_is_natval (FRIf,]) &% (!fclassy8});

if (tnmp_nat) {
PR p;] = 0;
PRI ps] = 0;
} else {
PRI p;] = tmp_rel;
PRI ps] = !tnp_rel;
} else {
if (fctype=='unc){
if(pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;

}

FP Exceptions: None

6-38 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fclrf

Floating-Point Clear Flags
Format: (gp) fclrf.sf F13

Description: The status field’s 6-bit flags field is reset to zero.
The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PR gp]) {
fp_set_sf_flags(sf, 0);
}

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-39

fcmp

IA-64 Application ISA Guide 1.0

Floating-Point Compare

Format: (gp) femp.frel.fctypest pg, py =15, f3 F4
Description: The two source operands are compared for one of twelve relations specified by frel. This produces a bool-
ean result which is 1 if the comparison condition is true, and O otherwise. This result is written to the two
predicate register destinations, p; and p,. The way the result is written to the destinations is determined by
the compare type specified by fctype. The allowed types are Normal (or none) and unc.
Table 6-21. Floating-point Comparison Types
PRIgp]==1
PR - result==0, result==1,
fctype [ap] No Source No Source Sc?u ?i;:\lgﬂTci;:Is
NaT Vals NaT Vals
PR[p | PR[pJ | PR[pid | PRIp] | PRIpd | PRIpo] | PRI[ps | PR[p,]
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
The mnemonic values for sf are given in Table 6-18 on page 6-30.
The relations are defined for each of the comparison types in Table 6-22. Of the twelve relations, not al
are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate target specifiers and uses an imple-
mented relation.
Table 6-22. Floating-point Comparison Relations
Quiet NaN
frel frel Complleter Relation Pseudo-op of as Operand
Unabbreviated : X
SignalsInvalid
eq equal f,==13 No
[t less than f, <faz Yes
le less than or equal fy <=1y Yes
gt greater than fy>f5 It fy o f3 Yes
ge greater than or equal fy>=1fy le fy o f3 Yes
unord | unordered f, 213 No
neq not equal I(f,==13) | eg P1 < Po No
nit not less than I(f<fa) | It PL < Po Yes
nle not less than or equal I(fo<=1y) | le PL < P2 Yes
ngt not greater than I(f>f3) | It fpefs prop Yes
nge not greater than or equal | !(f, >=1f3) | le foofy pLop Yes
ord ordered 1(f; ?13) unord PL - P2 No
6-40 1A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fcmp

Operation: if (PRgp]) {
if (p1 == p2)
illegal operation fault();

if (tnp_isrcode = fp_reg_disabled(f, f3 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
PRI p;] =
PR p2]
} else {
fcnp_exception_fault_check(f, f3 frel, sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

0;
0;

tmp_fr2 = fp_reg_read(FR f,]);
tmp_fr3 = fp_reg_read(FR f3]);
if (frel =='eq) tmp_rel =fp_equal(tmp_fr2, tmp_fr3);

else if (frel =='It) tmp_rel =fp_less_than(tmp_fr2, tmp_fr3);

else if (frel =='le") tmp_rel =fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if (frel =='gt') tmp_rel =fp_less_than(tmp_fr3, tmp_fr2);

else if (frel =='ge’) tmp_rel=fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else if (frel ==‘unord)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);

else if (frel =='neq’) tmp_rel = Ifp_equal(tmp_fr2, tmp_fr3);

else if (frel =='nlt) tmp_rel = ifp_less_than(tmp_fr2, tmp_fr3);

else if (frel =='nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if (frel =='ngt) tmp_rel = Ifp_less_than(tmp_fr3, tmp_fr2);

else if (frel =='nge’) tmp_rel = fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else tmp_rel = fp_unordered(tmp_fr2, tmp_fr3); //‘ord’

PR[p4] = tmp_rel;
PR[pJ] = tmp_rel;

fp_update_fpsr(sf, tmp_fp_env);

}else {
if (fctype=="'unc’){
if(pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;
}
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-41

fevt.fx IA-64 Application ISA Guide 1.0

Convert Floating-Point to Integer

Format: (gp) fevt.fx.sf fi =", signed form F10
(gp) fevt.fx.trunc.sf f; =1, signed form, trunc_form F10
(gp) fevt.fxusf fi=f, unsigned form F10
(gp) fevt.fxu.trunc.sf fy =", unsigned form, trunc_form F10

Description: FR f, is treated as a register format floating-point value and converted to a signed (signed_form) or
unsigned integer (unsigned form) using either the rounding mode specified in the FPSR.sf.rc, or using
Round-to-Zero if the trunc_form of the instruction is used. The result is placed in the 64-bit significand
field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign
field of FR f; is set to positive (0).

If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR{ f;] = NATVAL;
fp_update_psr(f,);
} else {
trmp_defaul t _result = fcvt_exception_fault_check(f, sf,
signed_form trunc_form & np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan(tnp_default _result)) {
FR f;].significand = | NTEGER | NDEFI NI TE;
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE
} else {
tmp_res = fp_ieee_rnd_to_int(fp_reg_read(FRf;]), & np_fp_env);
if (tnp_res. exponent)
tnp_res.significand = fp_U64 _rsh(
trp_res.significand, (FP_INTEGER EXP - tnp_res.exponent));
if (signed_form & tnp_res.sign)
tmp_res.significand = (~tnp_res.significand) + 1;

FR{f4].significand = tnp_res. significand;
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

}

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

6-42 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fevt.xf

Convert Signed Integer to Floating-point
Format: (gp) fevtxf fi="f, F11

Description: The 64-bit significand of FR f, is treated as a signed integer and its register file precision floating-point
representation is placed in FR f;.

If FRf,isaNaTVal, FRf; is set to NaTVal instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, 0, 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf5])) {
FR{ f;] = NATVAL;
} else {
tmp_res = FR{f,];
if (tnp_res.significand{63}) {
trp_res.significand = (~tnp_res.significand) + 1,
tnp_res.sign = 1;
} else
tnp_res.sign = 0;

tnp_res. exponent = FP_I NTEGER_EXP;
tmp_res = fp_normalize(tnp_res);

FR{f;].significand = tnp_res.significand;
FR f ;] . exponent = tnp_res. exponent;
FR{f4].sign = tnp_res. sign;
}
fp_update_psr(f,);
}

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-43

fevt.xuf IA-64 Application ISA Guide 1.0

Convert Unsigned Integer to Floating-point
Format: (gp) fevt.xuf.pe.sf f; =13 (unsigned form) pseudo-op of: (gp) fmapc.sf f; = f3, f1, fO

Description: FR f3 is multiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.
Note: Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an integer in the
floating-point register file producing a normal floating-point value.

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgaésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statysfietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47

6-44 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fetchadd

Fetch And Add Immediate

Format: (gp) fetchadd4.sem.ldhint rq = [r3], inc3 four_byte form M17
(gp) fetchadd8.sem.Idhint rq = [rs], inc3 eight byte fom M17

Description: A vaue consisting of four or eight bytesisread from memory starting at the address specified by the value
in GR r5. The value is zero extended and added to the sign-extended immediate value specified by incs.
The values that may be specified by inc; are: -16, -8, -4, -1, 1, 4, 8, 16. The least significant four or eight
bytes of the sum are then written to memory starting at the address specified by the value in GRr3. The
zero-extended value read from memory is placed in GR rq and the NaT bit corresponding to GR r4 is

cleared.
The sem completer specifies the type of semaphore operation. These operations are described in
Table 6-23.
Table 6-23. Fetch and Add Semaphore Types
sem Ordering .
Completer Semantics Semaphore Operation
. The memory read/write is made visible prior to all subsequent data
acq Acquire
MEmOory acCesses.
The memory read/write is made visible after al previous data mem-
rel Release
Ory aCcCesses.

The memory read and write are guaranteed to be atomic.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the Idhint completer specifies the locality of the memory access. The values of the Idhint
completer are given in Table 6-28 on page 6-102. Locality hints do not affect program functionality and
may be ignored by the implementation.

Operation: if (PRRgpl) {
check_target_register(r;, SEMAPHORE);

if (R rg.nat)
regi ster_nat _consunpti on_f aul t (SEVAPHORE) ;

size = four_byte form? 4 : 8;
paddr = tlb_translate(G r3, size, SEVMAPHORE, PSR cpl, &mattr, & np_unused);
if (!'ma_supports _fetchadd(nmattr))

unsupported_data_r ef erence_faul t (SENMAPHORE, CRrg]);

if (sem=='acq)

val = mem_xchg_add(i ncgs, paddr, size, UM.be, mattr, ACQUIRE, | dhi nt);
else // ‘rel
val = mem_xchg_add(7 ncgz, paddr, size, UM.be, mattr, RELEASE, | dhi nt);

alat_inval_multiple_entries(paddr, size);

GRIr ;] = zero_ext(val, size * 8);
GR[r 4].nat = 0;

HP/Intel |IA-64 Instruction Reference 6-45

flushrs IA-64 Application ISA Guide 1.0

Flush Register Stack
Format: flushrs M25

Description: All stacked genera registers in the dirty partition of the register stack are written to the backing store
before execution continues. The dirty partition contains registers from previous procedure frames that
have not yet been saved to the backing store.

After thisinstruction completes execution AR[BSPSTORE] is equal to AR[BSP].

This instruction must be the first instruction in an instruction group. Otherwise, the results are undefined.
Thisinstruction cannot be predicated.

Operation: whil e (AR[BSPSTORE] != AR[BSP]) {
rse_st or e(MANDATCRY) ; /'l increnents AR BSPSTORE]
del i ver _unmasked_pendi ng_external _i nterrupt();

6-46 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fma

Floating-Point Multiply Add
Format: (gp) fmapc.sf fi =fa, fy, o F1

Description: The product of FR f3 and FR f, is computed to infinite precision and then FR f, is added to this product,
again in infinite precision. The resulting value is then rounded to the precision indicated by pc (and possi-
bly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded result is
placedin FR f;.

If any of FR f3, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

If f5 is fO, an IEEE multiply operation is performed instead of a multiply and add. See “Floating-Point
Multiply” on page 6-54.

The mnemonic values for the opcodgaésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statys/fietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f4)) {
FR ;] = NATVAL;
fp_update_psr(f,);
} else {
trmp_defaul t _result = fma_exception_fault_check(f, f3 fyg,
pc, sf, &np_fp_env);
if (fp_raise_ fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;

} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f,));
if (fo1!=0)

tnmp_res = fp_add(tnp_res, fp_reg_read(FR f5]), tnp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(fy);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (1)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)

HP/Intel 1A-64 Instruction Reference 6-47

fmax IA-64 Application ISA Guide 1.0

Floating-Point Maximum
Format: (ap) fmax.sf f; =15, f3 F8

Description: The operand with the larger valueis placed in FR f;. If FR f, equals FR 3, FR f; gets FR f3.
If either FR f, or FR fzisaNaN, FR f; gets FR f5.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR ;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_bool _res = fp_less_than(fp_reg_read(FR[f3]), fp_reg_read(FR f,]));
FRIf;] = (tnp_bool _res ? FRIf; : FRf3);

fp_update fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

6-48 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fmerge

Floating-Point Merge

Format: (gp) fmerge.ns fy =f,, f5 neg_sign form Fo
(ap) fmergess f =15, f3 sign form Fo
(gp) fmerge.se f; =f,, f3 sign_exp_form Fo

Description: Sign, exponent and significand fields are extracted from FR f, and FR f3, combined, and the result is
placed in FRf;.

For the neg_sign_form, the sign of FR f, is negated and concatenated with the exponent and the signifi-
cand of FR fa. This form can be used to negate a floating-point number by using the same register for FR
f2 and FR f3.

For the sign_form, the sign of FR f, is concatenated with the exponent and the significand of FR fa.
For the sign_exp_form, the sign and exponent of FR f, is concatenated with the significand of FR fs.
For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

81 80 64 63 0 81 80 64 63 0
FRf, FRf3
M\‘al 80 6463 0
FRf;
Figure 6-7. Floating-point Merge Negative Sign Operation
81 80 64 63 0 81 80 64 63 0
FRf, FRf3
\81 80 6463 /
FRf, ‘

Figure 6-8. Floating-point Merge Sign Operation

81 80 64 63 0 81 80 64 63 0

FRT, FRf,

FRf, ’

Figure 6-9. Floating-point Merge Sign and Exponent Operation

HP/Intel |IA-64 Instruction Reference 6-49

fmerge IA-64 Application ISA Guide 1.0

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FRf;] = NATVAL;
} else {
FR{f;].significand = FR f3] . significand;
if (neg_sign_form {
FR f 4] . exponent = FR] f3].exponent;
FRIf;].sign = IFR[f] .sign;
} else if (sign_forn {
FR f 4] . exponent = FR] f3].exponent;
FRIf;].sign = FR f,]. sign;
} else { /1 sign_exp_form
FR f 4] . exponent = FR[f,].exponent;
FRIf;].sign = FR f,]. sign;

}
fp_update_psr(f,);

FP Exceptions: None

6-50 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fmin

Floating-Point Minimum

Format:

Description:

Operation:

FP Exceptions:

(gp) fmin.sf f; =f,, fa F8

The operand with the smaller valueis placed in FR f1. If FR f, equals FR f3, FR f; gets FR f5.
If either FR f, or FR fzisaNaN, FR f; gets FR f5.
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

if (PREgp]) {

}

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
fm nmax_exception_faul t_check(f, f3 sf, &np_fp_env);
if (fp_raise_ fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_bool _res = fp_less_than(fp_reg_read(FR f;]), fp_reg_read(FR f3]));
FRIf;] = tnp_bool _res ? FRIf, : FR f3];

fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(f,);

Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-51

fmix

IA-64 Application ISA Guide 1.0

Floating-Point Parallel Mix

Format:

Description:

(gp) fmix.| fi =1y, fa mix_|_form Fo
(gp) fmix.r fy =f,, f3 mix_r_form Fo
(gp) fmix.Ir fy="1,, 5 mix_Ir_form Fo

For the mix_I_form (mix_r_form), the left (right) single precision value in FR f, is concatenated with the
left (right) single precision value in FR f5. For the mix_Ir_form, the left single precision valuein FR f, is
concatenated with the right single precision valuein FR f5.

For all forms, the exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

63 3 3 3

fa f3
63 3231 0

Figure 6-10. Floating-point Mix Left

31 1 0

fy f
63 3231 0

Figure 6-11. Floating-point Mix Right

63 31

f, f
63 3231 0

Figure 6-12. Floating-point Mix Left-Right

6-52 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fmix

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FRf;] = NATVAL;

} else {

if (mx__form {
trmp_res_hi = FR f,]. significand{63:32};
tmp_res_lo = FR f3].significand{63:32};

} else if (mx_r _fornm {
trmp_res_hi = FR{ f,]. significand{31:0};
tmp_res_lo = FR f3].significand{31: 0};

} else { Il mix_lr_form
trmp_res_hi = FR f,]. significand{63:32};
tmp_res_lo = FR f3].significand{31: 0};

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;

}

fp_update_psr(fy);

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-53

fmpy IA-64 Application ISA Guide 1.0

Floating-Point Multiply
Format: (ap) fmpy.pc.sf i =f3, fy pseudo-op of: (qp) fmapc.sf f; =1z, fy, fO

Description: The product FR f3 and FR f4 is computed to infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified
by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f3 or FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statysfietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47.

6-54 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fms

Floating-Point Multiply Subtract
Format: (ap) fms.pc.sf fq =1z, Ty, o F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f, is subtracted from this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result isplaced in FR f;.

If any of FR f3, FR f4, or FR f, isaNaTVal, aNaTVal is placed in FR f; instead of the computed result.
If f5isf0, an IEEE multiply operation is performed instead of a multiply and subtract.

The mnemonic values for the opcodgaésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statys/fietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3) || fp_is_natval (FR[f4)) {
FR ;] = NATVAL;
fp_update_psr(f,);
} else {
trmp_defaul t _result = fns_fnma_exception_fault_check(f, f3 fy4
pc, sf, & np_fp_env);
if (fp_raise_ fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;

} else {
tnp_res = fp_nul (fp_reg_read(FR f4), fp_reg_read(FR f));
tmp_fr2 = fp_reg_read(FR f,]);

tp_fr2.sign = l'tnp_fr2.sign;
if (fo21=0)
tnp_res = fp_add(tnp_res, tnp_fr2, tnp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);
}

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)

HP/Intel |IA-64 Instruction Reference 6-55

fneg IA-64 Application ISA Guide 1.0

Floating-Point Negate
Format: (ap) fneg f1 =13 pseudo-op of: (qp) fmerge.ns f; =fa, fa

Description: Thevaluein FR f3 is negated and placed in FR f;.
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 6-49.

6-56 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fnegabs

Floating-Point Negate Absolute Value
Format: (gp) fnegabs f; =f3 pseudo-op of: (qp) fmerge.ns f; =10, f5

Description: The absolute value of the valuein FR f5 is computed, negated, and placed in FR f;.
If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 6-49.

HP/Intel |IA-64 Instruction Reference 6-57

fnma IA-64 Application ISA Guide 1.0

Floating-Point Negative Multiply Add
Format: (gp) fnmapc.sf i =fa, fy, f> F1

Description: The product of FR f3 and FR f, is computed to infinite precision, negated, and then FR f, is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result isplaced in FR f;.

If any of FR f3, FR f4, or FRf, isaNaTVal, FR f; is set to NaTVal instead of the computed result.
If f5 isf0, an IEEE multiply operation is performed, followed by negation of the product.

The mnemonic values for the opcodgaésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statysfietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3) || fp_is_natval (FR[f4)) {
FR ;] = NATVAL;
fp_update_psr(f,);
} else {
trmp_defaul t _result = fns_fnma_exception_fault_check(f, f3 fy4
pc, sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default result)) {
FRIf;] = tnp_default_result;
} else {
tmp_res = fp_nul (fp_reg_read(FR f3]), fp_reg_read(FR f,));
tnp_res.sign = !tnp_res.sign;
if (fo,1=0)
tmp_res = fp_add(tnp_res, fp_reg_read(FR f,]), tnmp_fp_env);
FRIf;] = fp_ieee_round(tnp_res, & np_fp_env);

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (1)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)

6-58 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fnmpy

Floating-Point Negative Multiply
Format: (ap) fnmpy.pc.sf f; =fa, fy pseudo-op of: (gp) fnmapc.sf f; =fg, f4,fO

Description: The product FR f3 and FR f, is computed to infinite precision and then negated. The resulting value is then
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If either FR f3 or FRfyisaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statys/fietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Negative Multiply Add” on page 6-58.

HP/Intel |IA-64 Instruction Reference 6-59

fnorm IA-64 Application ISA Guide 1.0

Floating-Point Normalize
Format: (gp) fnorm.pc.sf f; =fa pseudo-op of: (qp) fmapc.sf f; =fz, f1, fO

Description: FR f;3 is normalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f;.

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgadsare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statysfietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47.

6-60 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 for

Floating-Point Logical Or
Format: (gp) for fy =1y, f3 Fo

Description: The bit-wise logical OR of the significand fields of FR f, and FR f5 is computed. The resulting value is
stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3
(Ox1003E) and the sign field of FR f; is set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
FRIf4].significand = FR{f,].significand | FR f3].significand,
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

fp_update_psr(f,);
}

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-61

fpabs IA-64 Application ISA Guide 1.0

Floating-Point Parallel Absolute Value
Format: (gp) fpabs f; =13 pseudo-op of: (qp) fpmerge.s f; =10, f5

Description: The absolute values of the pair of single precision values in the significand field of FR f3 are computed
and stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 6-73.

6-62 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpack
Floating-Point Pack
Format: (ap) fpack fq =f,, fa pack form Fo
Description: The register format numbersin FR f, and FR f3 are converted to single precision memory format. These
two single precision numbers are concatenated and stored in the significand field of FR f; . The exponent
field of FRf is set to the biased exponent for 2.08% (0x1003E) and the sign field of FRf; is set to positive
(0).
If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.
81 0 il
fa 82-bit FR to Single Mem Format Conversion f3
63 3231 0
[I]
fy
Figure 6-13. Floating-point Pack
Operation: if (PR gp]) {

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;

} else {
trmp_res_hi = fp_single(FR f,]);
tmp_res_lo = fp_single(FR f3]);

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(f,);

FP Exceptions: None

HP/Intel

IA-64 Instruction Reference

6-63

fpamax IA-64 Application ISA Guide 1.0

Floating-Point Parallel Absolute Maximum
Format: (gp) fpamax.sf fy =f,, f5 F8

Description: The paired single precision valuesin the significands of FR f, and FR f5 are compared. The operands with
the larger absolute value are returned in the significand field of FRf;.

If the magnitude of high (low) FR f5 isless than the magnitude of high (low) FR f,, high (low) FR f; gets
high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR f3 isaNaTVal, high (low) FR f;
gets high (low) FR fs.

The exponent field of FRf; is set to the biased exponent for 2.0% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2 = tnp_right = fp_reg_read_hi (fy);

tmp_fr3 = tnp_left = fp_reg_read_hi(f3);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_left.sign = FP_SI GN_PCsl Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tmp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_l o(f));

tmp_fr3 = tnp_left = fp_reg_read_| o(f3);

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_left.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
tnp_res |lo = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(f);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

6-64 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpamin

Floating-Point Parallel Absolute Minimum
Format: (gp) fpamin.sf f =f,, f3 F8

Description: The paired single precision values in the significands of FR f, or FR f5 are compared. The operands with
the smaller absolute value is returned in the significand of FR f;.

If the magnitude of high (low) FR f, is less than the magnitude of high (low) FR f3, high (low) FR f; gets
high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f3.

If high (low) FR f, or high (low) FR fyisaNaN, and neither FR f, or FR f3 isaNaTVal, high (low) FR f;
gets high (low) FR fs.

The exponent field of FRf; is set to the biased exponent for 2.0% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR f;isNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PREgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise_ fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2 = tnp_left = fp_reg_read_hi(f));

tmp_fr3 = tnp_right = fp_reg_read_hi(f3);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

tnp_right.sign = FP_SI GN_PCSI Tl VE;

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tmp_res_hi = fp_single(tnp_bool _res ? tnp_fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_| o(f));

tmp_fr3 = tnp_right = fp_reg_read_lo(f3);

tnp_left.sign = FP_SI GN_PGCsl Tl VE;

trp_right.sign = FP_SI GN_PCSI Tl VE;

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
tnp_res |lo = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);
}
fp_update_psr(f);
FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-65

fpcmp

IA-64 Application ISA Guide 1.0

Floating-Point Parallel Compare

Format:

Description:

(gp) fpcmp.frel.sf f1=1,, f5 F8

The two pairs of single precision source operandsin the significand fields of FR f, and FR f5 are compared

for one of twelve relations specified by frel. This produces a boolean result which is a mask of 32 1's if the
comparison condition is true, and a mask of 32 0’s otherwise. This result is written to a pair of 32-bit inte-
gers in the significand field of FR. The exponent field of FIR is set to the biased exponent for®3.0
(0x1003E) and the sign field of ARRis set to positive (0).

Table 6-24. Floating-point Parallel Comparison Results

PR[qp]==1
PR[qp]==0 result==false, result==true, Oneor More
No Source No Source Source
NaT Vals NaT Vals NaTVal's
unchanged 0..0 1.1 NaTva

The mnemonic values faf are given in Table 6-18 on page 6-30.

The relations are defined for each of the comparison types in Table 6-24. Of the twelve relations, not all
are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate type specifiers and uses an imple-
mented relation.

If either FRf, or FRf3is a NaTVal, FR; is set to NaTVal instead of the computed result.

Table 6-25. Floating-point Parallel Comparison Relations

frel Completer . Quiet NaN
frel : Relation Pseudo-op of as Operand
Unabbreviated) :
Signals Invalid

eq equal f,==13 No

It less than fo <fy Yes

le less than or equal fo<=13 Yes

gt greater than fo>f3 It fo o f3 | Yes

ge greater than or equal fo>=15 le fr o f3 | Yes

unord | unordered f, 213 No

neq not equal I(fp ==13) No

nit not less than I(f, <fg) Yes

nle not less than or equal I(fy<=fy) Yes

ngt not greater than I(f>f3) | nit fo o f3 | Yes

nge not greater than or equal I(f,>=13) | nle fo o f3 | Yes

ord ordered I(f, ?13) No

6-66 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpcmp

Operation: if (PRgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, fsz 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FROf;] = NATVAL;
} else {
f pcnp_exception_faul t_check(f, f3 frel, sf, &np_fp_env);

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode fault(tnp_fp_env));

tmp_fr2 = fp_reg_read_hi (f),);
tmp_fr3 = fp_reg_read_hi (f3);
if (frel =='eq) tmp_rel =fp_equal(tmp_fr2, tmp_fr3);

else if (frel =='It) tmp_rel =fp_less_than(tmp_fr2, tmp_fr3);

else if (frel =='le") tmp_rel =fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if (frel =='gt) tmp_rel=fp_less_than(tmp_fr3, tmp_fr2);

else if (frel =='ge’) tmp_rel=fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else if (frel =="unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);

else if (frel =='neq) tmp_rel = 'fp_equal(tmp_fr2, tmp_{r3);

else if (frel =="nlt) tmp_rel = ifp_less_than(tmp_fr2, tmp_fr3);

else if (frel =="'nle’) tmp_rel =!fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if (frel =='ngt) tmp_rel =fp_less_than(tmp_fr3, tmp_fr2);

else if (frel =='nge’) tmp_rel = fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else tmp_rel = fp_unordered(tmp_fr2, tmp_fr3); //‘ord’

tmp_res_hi = (tmp_rel ? OXFFFFFFFF : 0x00000000);

tmp_fr2 =fp_reg_read_lo(fo);
tmp_fr3 =fp_reg_read_lo(f 3);

if (frel =='eq) tmp_rel=fp_equal(tmp_fr2, tmp_fr3);

else if (frel =='It) tmp_rel =fp_less_than(tmp_fr2, tmp_fr3);

else if (frel =='le") tmp_rel =fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if (frel =='gt) tmp_rel=fp_less_than(tmp_fr3, tmp_fr2);

else if (frel =='ge’) tmp_rel=fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else if (frel =="‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);

else if (frel =='neq) tmp_rel = 'fp_equal(tmp_fr2, tmp_{r3);

else if (frel =='nlt) tmp_rel = ifp_less_than(tmp_fr2, tmp_fr3);

else if (frel =="'nle’) tmp_rel =!fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if (frel =='ngt) tmp_rel =fp_less_than(tmp_fr3, tmp_fr2);

else if (frel =='nge’) tmp_rel = fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else tmp_rel = fp_unordered(tmp_fr2, tmp_fr3); //‘ord’

tmp_res_lo = (tmp_rel ? OXFFFFFFFF : 0x00000000);
FR[f 4].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f ;].exponent = FP_INTEGER_EXP;
FR[f ;].sign = FP_SIGN_POSITIVE;
fp_update_fpsr(sf, tmp_fp_env);

}

fp_update_psr(f);

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-67

fpcvt.fx IA-64 Application ISA Guide 1.0

Convert Parallel Floating-Point to Integer

Format: (ap) fpevt.fx.sf fi=f, signed form F10
(gp) fpevt.fx.trunc.sf =", signed form, trunc_form F10
(ap) fpevt.fxu.sf f; =f, unsigned form F10
(gp) fpevt.fxu.trunc.sf fq =1, unsigned form, trunc_form F10

Description: The pair of single precision values in the significand field of FR f, is converted to a pair of 32-bit signed
integers (signed_form) or unsigned integers (unsigned form) using either the rounding mode specified in
the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is used. Theresult iswritten as
apair of 32-bit integers into the significand field of FR f;. The exponent field of FR f; is set to the biased
exponent for 2.0%% (0x1003E) and the sign field of FR f is set to positive (0). If the result of the conver-
sion doesn't fit in a 32-bit integer the 32-bit integer indefinite value 0x80000000 is used as the result if the
IEEE Invalid Operation Floating-Point Exception fault is disabled.

If FR f5 is a NaTVal, FR; is set to NatVal instead of the computed result.

The mnemonic values faf are given in Table 6-18 on page 6-30.

6-68 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpcvt.fx

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;])) {
FR[f; = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpcvt_exception_fault_check(f, sf,
signed form trunc_form & np fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan(tnp_default _result_pair.hi)) {
tnp_res_hi = I NTEGER | NDEFI N TE_32_BIT;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f,), HGH &np_fp_env);
if (tnp_res.exponent)
tnp_res.significand = fp_U64 rsh(
tnp_res.significand, (FP_INTEGER EXP - tnp_res. exponent));
if (signed_form & tnp_res. sign)
tmp_res.significand = (~tnp_res.significand) + 1;

trp_res_hi = tnp_res. significand{31:0};
}

if (fp_is_nan(tnp_default_result_pair.lo)) {
tmp_res_| o = I NTEGER | NDEFI NI TE_32_BI T;
} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_lo(f,), LON & np_fp_env);
if (tnp_res. exponent)
tnp_res.significand = fp_U64 rsh(
trp_res.significand, (FP_INTEGER EXP - tnp_res.exponent));
if (signed_form & tnp_res. sign)
tmp_res.significand = (~tnp_res.significand) + 1;

tnp_res_|o = tnp_res.significand{31:0};
}

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}

FP Exceptions: Invalid Operation (V) Inexact (1)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault

HP/Intel |IA-64 Instruction Reference 6-69

fpma IA-64 Application ISA Guide 1.0

Floating-Point Parallel Multiply Add
Format: (gp) fpmasf fi =fs, fy, f> F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f; and FR f, are
computed to infinite precision and then the pair of single precision valuesin the significand field of FR f,
is added to these products, again in infinite precision. The resulting values are then rounded to single pre-
cision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the sig-
nificand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%3 (0x1003E) and
thesign field of FR f; is set to positive (0).

If any of FR f53, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed results.

Note: If f, is fO in the fpma instruction, just the IEEE multiply operation is performed. (See “Floating-
Point Parallel Multiply” on page 6-76.) FR f1, as an operand, is not a packed pair of 1.0 values, it is just
the register file format’s 1.0 value.

The mnemonic values faf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status fietkse given in Table 5-6 on page 5-5.

6-70 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpma

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3]) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpnma_exception_faul t_check(f,
fs fgu sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
if (f,1=0)

tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
tnp_res_hi = fp_ieee_round sp(tnp_res, HGH &np_fp_env);
}

if (fp_is_nan_or _inf(tnp_default _result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
if (f,1=0)

tmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnp_fp_env);
tnp_res |lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap

HP/Intel |IA-64 Instruction Reference 6-71

fpmax

IA-64 Application ISA Guide 1.0

Floating-Point Parallel Maximum

Format:

Description:

Operation:

(gp) fpmax.sf fy =T, f3 F8

The paired single precision values in the significands of FR f, or FR f5 are compared. The operands with
thelarger value is returned in the significand of FR f;.

If the value of high (low) FR f5 isless than the value of high (low) FR f,, high (low) FR f; gets high (low)
FR f,. Otherwise high (low) FR f; gets high (low) FR fa.

If high (low) FR f, or high (low) FR fyisaNaN, high (low) FR f; gets high (low) FR fs.

The exponent field of FRf; is set to the biased exponent for 2.0% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR f;isNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3)) {
FR ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2 = tnp_right = fp_reg_read_hi(fy);

tmp_fr3 = tnp_left = fp_reg_read_hi(f3);

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
tnp_res_hi = fp_single(tnp_bool _res ? tnmp fr2 : tnp_fr3);

tmp_fr2 = tnp_right = fp_reg_read_lo(fy);

tmp_fr3 = tnp_left = fp_reg_read_|l o(f3);

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res o = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

6-72 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpmerge

Floating-Point Parallel Merge

Format: (gp) fpmerge.ns fi =1, f3 neg_sign form Fo
(gp) fpmergess fy =15, 3 sign form Fo
(gp) fpmerge.se f1 =15, f5 sign_exp_form Fo

Description: For the neg_sign_form, the signs of the pair of single precision valuesin the significand field of FR f, are
negated and concatenated with the exponents and the significands of the pair of single precision valuesin
the significand field of FR f5 and stored in the significand field of FR f;. Thisform can be used to negate a
pair of single precision floating-point numbers by using the same register for f, and f3.

For the sign_form, the signs of the pair of single precision valuesin the significand field of FR f, are con-
catenated with the exponents and the significands of the pair of single precision valuesin the significand
field of FR f3 and stored in FR f;.

For the sign_exp_form, the signs and exponents of the pair of single precision values in the significand
field of FR f, are concatenated with the pair of single precision significands in the significand field of FR
f3 and stored in the significand field of FR f;.

For al forms, the exponent field of FR f; is set to the biased exponent for 2.05% (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

|
N i ;
‘>< / .
31 0

63 31

|
f2 62 3230 0
\H\){s)

sign bit

Figure 6-15. Floating-point Merge Sign Operation

|31 23|22
\‘g 5T54 3|2 2722 0|
)< /IS
|31 23|22 0

fy

Figure 6-16. Floating-point Merge Sign and Exponent Operation

HP/Intel |IA-64 Instruction Reference 6-73

fpmerge

IA-64 Application ISA Guide 1.0

Operation: if (PRIgp]) {

fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {

FRf;] = NATVAL;
} else {

if (neg_sign form {

tnp_res_hi =
I
tnp_res lo =

('FR{ ;] . significand{63} << 31)
(FR f3].significand{62:32});
('FR 7] . significand{31} << 31)
(FR{ f 5] .significand{30:0});

} else if (sign_form {

tnp_res_hi =
I
tnp_res lo =
I

} else {
tnp_res_hi

I
tnp_res_lo =
I

}

(FR{ f,].significand{63} << 31)
(FR f3].significand{62:32});
(FR{ o] .significand{31} << 31)
(FR{ f3].significand{30:0});
/1 sign_exp_form
(FR{ f,].significand{63: 55} << 23)
(FR{ f3].significand{54:32});
(FR{] .significand{31: 23} << 23)
(FR{ f3].significand{22:0});

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;

}
fp_update_psr(f,);

FP Exceptions: None

6-74 |A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 fpmin

Floating-Point Parallel Minimum

Format:

Description:

Operation:

(gp) fpmin.sf f; =fy, f3 F8

The paired single precision values in the significands of FR f, or FR f5 are compared. The operands with
the smaller valueisreturned in significand of FR f;.

If the value of high (low) FR f, isless than the value of high (low) FR f3, high (low) FR f; gets high (low)
FR f,. Otherwise high (low) FR f; gets high (low) FR fa.

If high (low) FR f, or high (low) FR fyisaNaN, high (low) FR f; gets high (low) FR fs.

The exponent field of FRf; is set to the biased exponent for 2.0% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.It operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
f pm nmax_exception_faul t _check(f, f3 sf, &np_fp_env);
if (fp_raise_ fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

tmp_fr2 = tnp_left = fp_reg_read_hi(f));

tmp_fr3 = tnp_right = fp_reg_read_hi(f3);

tnp_bool _res = fp_less than(tnp_left, tnmp_right);
tnp_res_hi = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

tmp_fr2 = tnp_left = fp_reg_read_| o(f));

tmp_fr3 = tnp_right = fp_reg_read_l o(f3);

trp_bool _res = fp_less_than(tnp_left, tnp_right);
tnp_res o = fp_single(tnp_bool res ? tnp fr2: tnp_fr3);

FRf;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

}
fp_update_psr(f,);
}

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel

IA-64 Instruction Reference 6-75

fpmpy IA-64 Application ISA Guide 1.0

Floating-Point Parallel Multiply
Format: (ap) fpmpy.sf f; =13, f4 pseudo-op of: (qp) fpmasf f; =fa, fy, fO

Description: The pair of products of the pairs of single precision valuesin the significand fields of FRf; and FR f, are
computed to infinite precision. The resulting values are then rounded to single precision using the round-
ing mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand field of FR f;.
The exponent field of FR f; is set to the biased exponent for 2.0% (0x1003E) and the sign field of FR f; is
set to positive (0).

If either FR f3, or FRf,isaNaTVal, FR f; is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status fietdége given in Table 5-6 on page 5-5.

Operation: See “Floating-Point Parallel Multiply Add” on page 6-70.

6-76 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpms

Floating-Point Parallel Multiply Subtract
Format: (gp) fpms.sf fy =1z, fy, o F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f; and FR f, are
computed to infinite precision and then the pair of single precision valuesin the significand field of FR f,
is subtracted from these products, again in infinite precision. The resulting values are then rounded to sin-
gle precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in
the significand field of FR f;. The exponent field of FR f, is set to the biased exponent for 2.0%% (0x1003E)
and the sign field of FR f; is set to positive (0).

If any of FR f53, FR fy, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed results.
Note: If f, isfO in the fpmsinstruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status fietdége given in Table 5-6 on page 5-5.

HP/Intel |IA-64 Instruction Reference 6-77

fpms IA-64 Application ISA Guide 1.0

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(fy;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpns_f pnma_exception_fault_check(f, f3 fyg
sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tp_res_hi = fp_single(tnp_default_result_pair.hi);

} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
if (f,1=0) {
trmp_sub = fp_reg_read_hi(f),);
tnp_sub.sign = 'tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);
}

tnp_res_hi = fp_ieee_round sp(tnmp_res, HGH & np_fp_env);
}

if (fp_is_nan_or_inf(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);

} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
if (f,1=0) {
tmp_sub = fp_reg_read_|l o(f));
tnp_sub.sign = tnp_sub. sign;
tnp_res = fp_add(tnp_res, tnp_sub, tnp_fp_env);
}

tnp_res o = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE;

fp_update_fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode_trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (1)

Software Assist (SWA) trap

6-78 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpneg

Floating-Point Parallel Negate
Format: (gp) fpneg f =13 pseudo-op of: (qp) fpmerge.ns f; =fa, fa

Description: The pair of single precision values in the significand field of FR f5 are negated and stored in the signifi-
cand field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0 (0x1003E) and the
sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 6-73.

HP/Intel |IA-64 Instruction Reference 6-79

fpnegabs IA-64 Application ISA Guide 1.0

Floating-Point Parallel Negate Absolute Value
Format: (gp) fpnegabs f =f3 pseudo-op of: (qp) fpmerge.ns f; =10, f5

Description: The absolute values of the pair of single precision values in the significand field of FR f; are computed,
negated and stored in the significand field of FR f;. The exponent field of FR f; is set to the biased expo-
nent for 2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If FRfyisaNaTVal, FRf; is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 6-73.

6-80 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpnma

Floating-Point Parallel Negative Multiply Add
Format: (gp) fpnmasf fi =fa, fy, o F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f; and FR f, are
computed to infinite precision, negated, and then the pair of single precision values in the significand field
of FR f, are added to these (negated) products, again in infinite precision. The resulting values are then
rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results
are stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f; is set to positive (0).

If any of FR f3, FR f4, or FR f, isaNaTVal, FR f; is set to NaTVal instead of the computed result.

Note: If f, isfOin the fpnmainstruction, just the IEEE multiply operation (with the product being negated
before rounding) is performed.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status fietdége given in Table 5-6 on page 5-5.

HP/Intel |IA-64 Instruction Reference 6-81

fpnma IA-64 Application ISA Guide 1.0

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, f, f3 fyg))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3) || fp_is_natval (FR[f4)) {
FRf;] = NATVAL;
fp_update_psr(f,);
} else {
trp_defaul t _result_pair = fpns_f pnma_exception_fault_check(f, f3 fyg
sf, & np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or _inf(tnp_default _result_pair.hi)) {
tp_res_hi = fp_single(tnp_default_result_pair.hi);
} else {
tmp_res = fp_nul (fp_reg_read_hi (f3), fp_reg_read_hi(fg);
tnp_res.sign = !tnp_res.sign;
if (fo21=0)
tmp_res = fp_add(tnp_res, fp_reg_read_hi(f,), tnp_fp_env);
tnp_res_hi = fp_ieee_round_sp(tnp_res, HGH & np_fp_env);
}

if (fp_is_nan_or_inf(tnp_default_result_pair.lo)) {
tnmp_res_lo = fp_single(tnp_default_result_pair.lo);
} else {
tmp_res = fp_nul (fp_reg_read_lo(f3), fp_reg_read_lo(fy);
tnp_res.sign = ltnp_res.sign;
if (fo1!=0)
tmp_res = fp_add(tnp_res, fp_reg_read_lo(f,), tnp_fp_env);
tnp_res |lo = fp_ieee_round_sp(tnp_res, LON & np_fp_env);
}

FR{f4].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

fp_update fpsr(sf, tnp_fp_env);

fp_update_psr(f,);

if (fp_raise_traps(tnp_fp_env))
fp_exception_trap(fp_decode trap(tnp_fp_env));

}
}
FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (1)

Software Assist (SWA) trap

6-82 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fpnmpy

Floating-Point Parallel Negative Multiply
Format: (ap) fpnmpy.sf 1 =13, f4 pseudo-op of: (qp) fpnmasf fi = fa, f4,f0

Description: The pair of products of the pairs of single precision valuesin the significand fields of FRf; and FR f, are
computed to infinite precision and then negated. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f;. The exponent field of FR f; is set to the biased exponent for 2.0%% (0x1003E) and the sign
field of FR f; is set to positive (0).

If either FR f3 or FRf,isaNaTVal, FR f; isset to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status fietdége given in Table 5-6 on page 5-5.

Operation: See “Floating-Point Parallel Negative Multiply Add” on page 6-81.

HP/Intel |IA-64 Instruction Reference 6-83

fprcpa IA-64 Application ISA Guide 1.0

Floating-Point Parallel Reciprocal Approximation
Format: (ap) fprepasf fi,p, =15, f3 F6

Description: If PRgpisO, PR p,iscleared and FR f; remains unchanged.
If PR gpis 1, thefollowing will occur:

« Each half of the significand of FR is either set to an approximation (with a relative errorPE%)
of the reciprocal of the corresponding half of sRor set to the IEEE-754 mandated response for the
quotient FRf,/FR f5 of the corresponding half — if that half of FfRor of FRf5 is in the set {-Infin-
ity, -0, +0, +Infinity, NaN}.

« If either half of FRf; is set to the IEEE-754 mandated quotient, or is set to an approximation of the
reciprocal which may cause the Newton-Raphson iterations to fail to produce the correct IEEE-754
divide result, then PR, is set to 0, otherwise it is set to 1.

For correct IEEE divide results, when BRis cleared, user software is expected to compute the quo-
tient (FRf,/FR f3) for each half (using the non-paraltelcpa instruction), and merge the results into
FRf;, keeping PR, cleared.

» The exponent field of FR is set to the biased exponent for%.(Mx1003E) and the sign field of FR
f, is set to positive (0).

« If either FRf, or FRf3is a NaTVal, FR is set to NaTVal instead of the computed result, angfR
is cleared.

The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, fz 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is natval (FRIf,]) || fp_is_natval (FRf3])) {
FR{ f;] = NATVAL;
PR pgJ = O;
} else {
trp_default _result_pair = fprcpa_exception_fault_check(f, fjz sf,
& nmp _fp_env, & imts_check);

if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result_pair.hi) || limts_check.hi_fr3) {
tp_res_hi = fp_single(tnp_default_result_pair.hi);

tnp_pred_hi = 0;

} else {

num = fp_normalize(fp_reg_read_hi(fy));

den = fp_nornalize(fp_reg_read_hi(f3));

if (fp_is_inf(num && fp_is_finite(den)) {
tnp_res = FP_INFINTY;
tnp_res.sign = numsign ”~ den. sign;
trp_pred_hi = 0;

} elseif (fp_is_fi
tmp_res = FP_ZE
tp_res. si gn =
tnp_pred_hi = 0;

} else if (fp_is_zero(num && fp_is finite(den)) {
tmp_res = FP_ZERQ
tnmp_res.sign = numsign " den.sign;
trmp_pred_hi = 0;

} else {
tnp_res = fp_ieee_reci p(den);
if (limts_check.hi_fr2_or_quot)

tnp_pred_hi = 0;
el se
tnp_pred_hi = 1;

ite(num) && fp_is_inf(den)) {

num sign ~ den. sign;

6-84 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fprcpa

tmp_res_hi = fp_single(tnp_res);

if (fp_is_nan_or_inf(tnp_default_result_pair.lo) || limts_check.lo_fr3) {
tnmp_res_lo = fp_single(tnp_default_result_pair.lo);
tmp_pred_lo = 0;
} else {
num = fp_normalize(fp_reg_read_lo(fy));
den = fp_nornalize(fp_reg_read_lo(fj3));
if (fp_is_inf(nun) && fp_is finite(den)) {
tnp_res = FP_INFINTY;
tnp_res.sign = numsign ”~ den. sign;
tnp_pred lo = 0;
} elseif (fp_is_fi
tnp_res = FP_ZERQ
tmp_res.sign num si gn ~ den. si gn;
tnp_pred_lo = 0;
} else if (fp_is_zero(num && fp_is finite(den)) {
tnp_res = FP_ZERQ
tnp_res.sign = numsign " den.sign;
tmp_pred_lo = 0;
} else {
tnp_res = fp_ieee_reci p(den);
if (limts_check.lo_fr2_or_quot)
tnp_pred_lo = O;
el se
tnp_pred_lo = 1;

nite(num) && fp_is_inf(den)) {

1N

}
tnp_res_lo = fp_single(tnp_res);
}

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;

FR[f;].sign = FP_SI GN_PCSI Tl VE;

PRIp = tnp_pred_hi && tnp_pred_| o;

fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRIp = 0;

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-85

fprsqgrta IA-64 Application ISA Guide 1.0

Floating-Point Parallel Reciprocal Square Root Approximation
Format: (gp) fprsgortasf fq,po =fa F7

Description: If PRgpisO, PR p,iscleared and FR f; remains unchanged.
If PR gpis 1, thefollowing will occur:

« Each half of the significand of FR is either set to an approximation (with a relative errort€3)
of the reciprocal square root of the corresponding half ofFBr set to the IEEE-754 compliant
response for the reciprocal square root of the corresponding halffgf-Rf that half of FRf5 is in
the set {-Infinity, -Finite, -0, +0, +Infinity, NaN}.

+ If either half of FRfy is set to the IEEE-754 mandated reciprocal square root, or is set to an approxi-
mation of the reciprocal square root which may cause the Newton-Raphson iterations to fail to pro-
duce the correct IEEE-754 square root result, thep H&set to 0, otherwise it is set to 1.

For correct IEEE square root results, when@ & cleared, user software is expected to compute the
square root for each half (using the non-parélielgr t a instruction), and merge the results in FR
keeping PRp, cleared.

» The exponent field of FR is set to the biased exponent for%.(Mx1003E) and the sign field of FR
f, is set to positive (0).
* If FRf3is a NaTVal, FR, is set to NaTVal instead of the computed result, angARcleared.
The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fz 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf3])) {
FR{ f;] = NATVAL;
PRI ps] = 0;
} else {
tnp_default _result_pair = fprsqgrta_exception_fault_check(fgs sf,
& nmp fp_env, & imts_check);
if (fp_raise_fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tnp_default_result_pair.hi);
tnp_pred_hi = 0;

} else {

tmp_fr3 = fp_normalize(fp_reg_read_hi(f3));

if (fp_is_zero(tnmp_fr3)) {
tnp_res = FP_INFINTY;
trmp_res.sign = tnp_fr3.sign;
trp_pred_hi = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tnmp_res = FP_Z
tmp_pred_hi =

} else {
tnp_res = fp_ieee_recip_sqrt(tnp_fr3);
if (limts_check.hi)

tnp_pred_hi = 0;
el se
tnp_pred_hi = 1;

}
tmp_res_hi = fp_single(tnp_res);
}

if (fp_is_nan(tnp_default_result_pair.lo)) {
tnp_res_lo = fp_single(tnp_default_result_pair.lo);
tnp_pred_lo = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_lo(f3));

6-86 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fprsqgrta

if (fp_is_zero(tnmp_fr3)) {
tnmp_res = FP_INFINITY;
tnp_res.sign = tnp_fr3.sign;
tnp_pred_lo = 0;
} else if (fp_is_pos_inf(tmp_fr3)) {
tnp_res = FP_ZERQ
tnp_pred_lo = 0;
} else {
tnp_res = fp_ieee_recip_sqrt(tnp_fr3);
if (limts_check.l o)
trnp_pred_lo = 0;
el se
tnp_pred_lo = 1;
}
tnp_res_lo = fp_single(tnp_res);
}

FR{f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo);
FR f ;] . exponent = FP_| NTEGER EXP;

FR{ f4].sign = FP_SI GN_POSI Tl VE

PRI pJ = tnp_pred_hi && tnp_pred_| o;

fp_update fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI ps = 0;

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-87

frcpa IA-64 Application ISA Guide 1.0

Floating-Point Reciprocal Approximation
Format: (ap) frepasf f1, po =1y, fa F6

Description: If PRgpisO, PR p,iscleared and FR f; remains unchanged.
If PR gpis 1, thefollowing will occur:

* FRfy is either set to an approximation (with a relative erroit€%) of the reciprocal of FRs, or to
the IEEE-754 mandated quotient of R f; — if either FRf, or FRf3 is in the set {-Infinity, -0,
Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

+ If FRf; is set to the approximation of the reciprocal offfRhen PR, is set to 1; otherwise, it is set
to 0.

* If FR f, and FRf; are such that the approximation of &RR reciprocal may cause the Newton-Raph-
son iterations to fail to produce the correct IEEE-754 result of /AR f5, then a Floating-point
Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 quotieriy/FRf3), return the result in FR
f1, and set PR, to 0.

« If either FRf, or FRfzis a NaTVal, FR is set to NaTVal instead of the computed result, angfR
is cleared.

The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, fz 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf;]) || fp_is_natval (FRf3)) {
FR{ f;] = NATVAL;
PRI ps] = 0;
} else {
trp_default _result = frcpa_exception_fault_check(f, f3 sf, &np_fp_env);
if (fp_raise fault(tnp_fp_env))
fp_exception_fault(fp_decode_fault(tnp_fp_env));

if (fp_is_nan_or_inf(tnp_default_result)) {
FRIf;] = tnp_default_result;
PRI ps = 0;

} else {
num = fp_normalize(fp_reg_read(FR f;]));
den = fp_normalize(fp_reg_read(FR f3]));
if (fp_is_inf(nun) && fp_is finite(den)) {

FRIf{ = FP_INFINITY;
FR(f4].sign = numsign " den. sign;
PRI ps] = 0;
} elseif (fp_is_finite(num && fp_is_inf(den)) {
FR f;] = FP_ZERQ
FR{f4].sign = numsign " den.sign;
PRI ps = 0;
} else if (fp_is_zero(num && fp_is_finite(den)) {
FR ;] = FP_ZERQO
FR[f;].sign = numsign * den.sign;
PRI ps] = 0;
} else {
FR ;] = fp_i eee_recip(den);
PRIp = 1;

}
fp_update _fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI ps = 0;

6-88 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 frcpa

/1 fp_ieee recip()

fp_i eee_reci p(den)
{
const EMuint_t REC P_TABLE[256] = {
0x3fc, 0Ox3f4, O0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
Ox3be, 0x3b7, Ox3af, 0x3a8, 0x3al, 0x399, 0x392, 0x38b,
0x384, 0x37d, 0x376, 0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, Ox2fa, 0x2f4, Ox2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2dl1l, O0x2chb, 0x2c5, O0x2bf,
Ox2ba, 0x2b4, Ox2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269
0x264, 0x25f, O0x25a, 0x255, 0x250, 0x24b, 0x246, 0x241
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b
0x216, 0x211, 0x20d, 0x208, 0x204, Ox1ff, Oxifb, Ox1f6,
Ox1f 2, Oxled, Oxl1le9, Oxleb5, O0x1leO, Oxldc, 0x1d8, 0x1d4,
Ox1cf, Oxlcb, Ox1c7, O0x1c3, Ox1bf, Oxlbb, O0x1b6, 0x1b2
Oxlae, Oxlaa, Oxla6, Oxla2, Ox19e, O0x19a, 0x197, 0x193,
0x18f, 0x18b, 0x187, 0x183, 0x17f, Ox17c, 0x178, 0x174,
0x171, 0Ox16d, 0x169, 0x166, 0x162, Ox1l5e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, Ox12e, 0x12a, 0x127, 0x124, 0x120,
Ox11d, Ox1la, O0x117, 0x113, 0x110, 0x10d, Ox10a, 0x107,
0x103, 0x100, O0xOfd, OxOfa, OxOf7, O0xOf4, OxO0f1, OxOee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0xOdc, 0x0d9, 0x0d6
0x0d3, 0x0dO, 0xOcd, OxOca, 0x0c8, 0x0c5, 0x0c2, OxO0bf,
0x0bc, 0x0b9, 0x0b7, 0x0b4, 0x0Obl, Ox0Oae, Ox0Oac, 0x0a9,
0x0a6, O0x0a4, Ox0al, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0x07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0xO05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0x04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022
0x020, Ox0le, 0x01lc, Ox0la, 0x018, 0x015, 0x013, 0x011
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001

}s

tnp_i ndex = den. si gni fi cand{62: 55};

tnp_res.significand = (1 << 63) | (RECI P_TABLE tnp_i ndex] << 53);
tnp_res. exponent = FP_REG EXP_QONES - 2 - den. exponent;
tnp_res.sign = den.sign

return (tnp_res);

}

FP Exceptions: Invalid Operation (V)
Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-89

frsqrta IA-64 Application ISA Guide 1.0

Floating-Point Reciprocal Square Root Approximation
Format: (ap) frsgrtasf fq, pp=fa F7

Description: If PRgpisO, PR p,iscleared and FR f; remains unchanged.
If PR gpis 1, thefollowing will occur:

* FRfy is either set to an approximation (with a relative erroit€3) of the reciprocal square root of
FRfs, or set to the IEEE-754 mandated square root d;FR if FR f5is in the set {-Infinity, -Finite,
-0, Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

 If FRf; is set to an approximation of the reciprocal square root d§,RRen PRp, is set to 1; other-
wise, it is set to 0.

* If FR f5is such the approximation of its reciprocal square root may cause the Newton-Raphson itera-
tions to fail to produce the correct IEEE-754 square root result, then a Floating-point Exception fault
for Software Assist occurs.

System software is expected to compute the IEEE-754 square root, return the resiit mndRset
PRp,to 0.

* If FR f3is a NaTVal, FR, is set to NaTVal instead of the computed result, angARcleared.
The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PRI gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fz 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf3])) {
FR{ f;] = NATVAL;
PRI ps] = 0;
} else {
trp_default _result = frsqrta_exception_fault_check(fs sf, &np_fp_env);
if (fp_raise_fault(tnp_fp_env))
fp_exception_faul t(fp_decode_fault(tnp_fp_env));

if (fp_is_nan(tnp_default_result)) {

FRIf;] = tnp_default_result;
PRI ps = 0;
} else {

tmp_fr3 = fp_normalize(fp_reg_read(FR[f3));
if (fp_is_zero(tnmp_fr3)) {
FRIf;] = trmp_fr3;

PRIp] = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
FRIf{ = tnmp_fr3;
PRI ps = 0;

} else {
FRIf;] = fp_ieee_recip_sqrt(tnmp_fr3);
PRIps = 1;

}
}
fp_update _fpsr(sf, tnp_fp_env);

}

fp_update_psr(f,);
} else {

PRI pg = 0;

/1l fp_ieee_recip_sqrt()

fp_ieee_recip_sqrt(root)
{
const EMuint_t REC P_SQRT_TABLE[256] = {
Oxlab, Ox1a0, 0Ox19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
Ox17a, 0x175, 0x170, Ox16b, 0x166, 0x161, 0x15d, 0x158,

6-90 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 frsqrta

0x153, Ox14e, Oxl1l4a, 0x145, 0x140, O0x13c, 0x138, 0x133,
Ox12f, Ox12a, 0x126, 0x122, Oxlle, Oxl1lla, 0x115, Ox111,
0x10d, 0x109, 0x105, 0x101, O0xOfd, OxOfa, 0xOf6, OxOf2,
Ox0ee, O0x0Oea, 0x0e7, 0x0e3, 0x0df, Ox0dc, 0x0d8, 0x0d5
0x0d1l, 0xOce, OxOca, 0xOc7, 0x0c3, 0x0cO, 0xObd, 0x0b9
0x0b6, 0x0b3, 0x0b0O, Ox0ad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x085, 0x082, 0x07f, 0x07d, O0x07a, 0x077, 0x074, 0x071,
0x06f, 0x06c, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05c,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, OxOle, Ox0lc, OxOla, 0x018, 0x016, 0x014, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, O0x005, 0x003, 0x001
0x3fc, O0x3f4, 0x3ec, 0x3e5, 0x3dd, 0x3d5, Ox3ce, 0x3c7,
Ox3bf, 0x3b8, 0x3bl, Ox3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x325, 0x31f, 0Ox3la, 0x314, 0x30f, 0x309, 0x304, Ox2fe,
0x2f 9, Ox2f4, Ox2ee, 0x2e9, 0x2e4, 0x2df, Ox2da, 0x2d5,
0x2d0, Ox2ch, 0x2c6, 0x2cl, 0x2bd, 0x2b8, 0x2b3, O0x2ae,
Ox2aa, 0x2ab, 0x2al, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, Oxifd, Ox1f9, O0x1f6, Ox1f3,
Ox1f 0, Oxlec, 0Ox1le9, Oxle6, 0Oxle3, Ox1ldf, Oxldc, 0x1d9
0x1d6, 0x1d3, 0x1dO, Oxlcd, Oxlca, Oxlc7, Oxlc4, Oxlcl
Oxlbe, Ox1bb, 0x1b8, 0x1b5, 0x1b2, Oxlaf, Oxlac, Oxlaa,

}s

tp_i ndex = (root.exponent{0} << 7) | root.significand{62:56};
tnp_res.significand = (1 << 63) | (RECI P_SQRT_TABLE[tnp_i ndex] << 53)
tnp_res. exponent = FP_REG EXP_HALF - ((root.exponent - FP_REG BIAS) >> 1)
tnp_res.sign = FP_SI GN_PGCs| Tl VE

return (tnp_res);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

HP/Intel |IA-64 Instruction Reference 6-91

fselect

IA-64 Application ISA Guide 1.0

Floating-Point Select

Format:

Description:

Operation:

(qp) fselect fl = f3! f4! fZ F3

The significand field of FR f; islogically AND-ed with the significand field of FR f, and the significand
field of FR f4 is logically AND-ed with the one’s complement of the significand field offzR’he two
results are logically OR-ed together. The result is placed in the significand fieldfof FR

The exponent field of FR is set to the biased exponent for% (x1003E). The sign bit field of FRis
set to positive (0).

If any of FRf;, FRf,, or FRf, is a NaTVal, FR is set to NaTVal instead of the computed result.

if (PRIgp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3) || fp_is_natval (FR[f,)) {
FR ;] = NATVAL;
} else {
FR{ f4].significand (FR f3].significand & FR[f] . significand)
(FR f4] .significand & ~FR f] . significand);
NTEGER_EXP;

I
FRf4] . exponent = FP_I
| GN_PCSI Tl VE;

FRIf4].sign = FP Sl

fp_update_psr(f,);
}

FP Exceptions: None

6-92 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fsetc

Floating-Point Set Controls
Format: (gp) fsetc.sf amask7, omask7 F12

Description: The status field’s control bits are initialized to the value obtained by logically AND-ing the sf0.controls
andamask7 immediate field and logically OR-ing tlenask7 immediate field.

The mnemonic values faf are given in Table 6-18 on page 6-30.

Operation: if (PR gp]) {
tnp_controls = (AR FPSR] . sf0.controls & amask?7) | omask?7,
if (is_reserved fiel d(FSETC, sf, tnp_controls))
reserved_register field fault();
fp_set_sf_control s(sf, tnp_control s);

}

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-93

fsub IA-64 Application ISA Guide 1.0

Floating-Point Subtract
Format: (gp) fsub.pc.sf fy =13, 15 pseudo-op of: (qp) fms.pc.sf fy =", 1, f,

Description: FR f, is subtracted from FR f5 (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed
in FR fl'

If either FR f3 or FR f,isaNaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcodgésare given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the statysfietd's
andrc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Subtract” on page 6-55.

6-94 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fswap

Floating-Point Swap

Format: (gp) fswap fi =1, fa swap_form Fo
(ap) fswap.nl f; =1y, f3 swap_nl_form Fo
(ap) fswap.nr f; =1, fa swap_nr_form Fo

Description: For the swap_form, the | eft single precision value in FR f, is concatenated with the right single precision
vauein FR f3. The concatenated pair is then swapped.

For the swap_nl_form, the left single precision value in FR f, is concatenated with the right single preci-
sion valuein FR f5. The concatenated pair is then swapped, and the | eft single precision value is negated.

For the swap_nr_form, the left single precision value in FR f, is concatenated with the right single preci-
sion valuein FR f3. The concatenated pair is then swapped, and the right single precision value is negated.

For all forms, the exponent field of FR f4 is set to the biased exponent for 2.0%% (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

63 32 31

|] |

63 3231 0
fy

Figure 6-17. Floating-point Swap

63 62 32 3130 0

negate rignt negate! 3

63 62 323130 0
fy

Figure 6-18. Floating-point Swap Negate Left or Right

HP/Intel |IA-64 Instruction Reference 6-95

fswap IA-64 Application ISA Guide 1.0

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; f, f3 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf]) || fp_is_natval (FRf3)) {
FRf;] = NATVAL;
} else {
if (swap_form {
trmp_res_hi = FR{ f3]. significand{31:0};
tmp_res_lo = FR f,]. significand{63:32};
} else if (swap_nl _forn {
tmp_res_hi = (!FR[f3].significand{31} << 31)
| (FR f3].significand{30:0});
tmp_res_lo = FR f,]. significand{63:32};
} else { // swap_nr_form
tmp_res_hi = FR f3].significand{31:0};
tnp_res_lo = (!FR f,].significand{63} << 31)
| (FRf].significand{62:32});
}

FR[f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;

}

fp_update_psr(fy);

FP Exceptions: None

6-96 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 fsxt

Floating-Point Sign Extend

Format: (ap) fsxt.l fq =1, f3 sxt_|_form Fo
(ap) fsxtr fy =1, fa sxt_r_form Fo

Description: For the sxt_|_form (sxt_r_form), the sign of the left (right) single precision value in FR f, is extended to
32-bits and is concatenated with the left (right) single precision value in FR f3.

For al forms, the exponent field of FR f4 is set to the biased exponent for 2.0%% (0x1003E) and the sign
field of FR f; is set to positive (0).

For all forms, if either FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

63 32 63 32

fy T
63 3231 0

Figure 6-19. Floating-point Sign Extend Left

fa f3
63 3231 0

Figure 6-20. Floating-point Sign Extend Right

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3z 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRf;]) || fp_is_natval (FR f3)) {
FR{ f;] = NATVAL;

} else {
if (sxt_l_form ({
tmp_res_hi = (FR[f,].significand{63} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3].significand{63:32};

} else { [l sxt_r_form
tnp_res_hi (FR{ fJ].significand{31} ? OxFFFFFFFF : 0x00000000);
tmp_res_lo = FR f3]. significand{31:0};

}
FR f;].significand = fp_concatenate(tnp_res_hi, tnp_res_|lo0);
FR[f ;] . exponent = FP_| NTEGER _EXP;
FR{ f4].sign = FP_SI GN_POSI Tl VE
}

fp_update_psr(f,);

FP Exceptions: None

HP/Intel |IA-64 Instruction Reference 6-97

fxor IA-64 Application ISA Guide 1.0

Floating-Point Exclusive Or
Format: (gp) fxor fy="15, f5 Fo

Description: The bit-wise logical exclusive-OR of the significand fields of FR f, and FR f5 is computed. The resulting
vaue is stored in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent
for 2.0%% (0x1003E) and the sign field of FR f, is set to positive (0).

If either of FR f, or FR fzisaNaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f; fo f3 0))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FRf3])) {
FR ;] = NATVAL;
} else {
FR{f4].significand = FR{f,].significand ~ FR f3].significand,
FR f ;] . exponent = FP_| NTEGER EXP;
FR[f].sign = FP_SI GN_PCSI Tl VE;

fp_update_psr(f,);
}

FP Exceptions: None

6-98 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 getf

Get Floating-Point Value or Exponent or Significand

Format: (ap) getf.s ry="f, single foom M19
(gp) getf.d ry =1, double form M19
(ap) getf.exp ry =", exponent_form ~ M19
(ap) getf.sig ry =1, significand_form ~ M19

Description: In the single and double forms, the value in FR f, is converted into a single precision (single_form) or
double precision (double_form) memory representation and placed in GR r4. In the single_form, the most-
significant 32 bitsof GRrq are set to 0.

In the exponent_form, the exponent field of FR f, is copied to bits 16:0 of GR r4 and the sign bit of the
vauein FRf, is copied to bit 17 of GR r4. The most-significant 46-bits of GR r, are set to zero.

FRf, [s| exponent significand
|
63 18y16 y O
GRrq 0
46 1 17

Figure 6-21. Function of getf.exp

In the significand_form, the significand field of the valuein FR f, is copied to GR r

FRf, |s|exponent significand
63 ; 0

64

GR ry

Figure 6-22. Function of getf.sig
For all forms, if FR f, contains aNaTVal, then the NaT bit corresponding to GRr4 isset to 1.

Operation: if (PRI gp]) {
check_target_register(ry);
if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if (single_fornm {
CGRr {31:0} = fp_fr_to nmnemformat(FR f;, 4, 0);
R r {63:32} = 0;
} else if (double forn {
CRry =fp_fr_to_memformat(FRf,], 8, 0);
} else if (exponent_forn) {
R r {63:18} = 0;
GRr 1{16:0} = FR f,].exponent;
R ri]{17} = FR(f;.sign;
} else /] significand form
CRr;] = FRf,].significand,
if (fp_is_natval (FRf5]))

&R rq.nat = 1,
el se
&R rq .nat = 0;

HP/Intel |IA-64 Instruction Reference 6-99

invala IA-64 Application ISA Guide 1.0

Invalidate ALAT

Format: (gp) invala complete foom M24
(gp) invalae rq gr_form, entry form M26
(gp) invalae f; fr_form, entry foom M27

Description: The selected entry or entriesin the ALAT are invalidated.

In the complete form, all ALAT entries are invalidated. In the entry_form, the ALAT is queried using the
genera register specifier ry (gr_form), or the floating-point register specifier f; (fr_form), and if any
ALAT entry matches, it isinvalidated.

Operation: if (PR gp]) {
if (conplete_form
al at _inval ();
else { // entry form
if (gr_form
al at _inval _si ngl e_entry(GENERAL, r);
else // fr_form
al at _i nval _si ngl e_entry(FLOAT, f,);

6-100 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Id

Load

Format: (gp) Idsz.ldtypeldhint rq =[rs] no_base update form M1
(gp) Idszldtype.ldhint rq=[r3], o reg_base update form M2
(gp) Idsz.ldtype.ldhint rq =[r3], immg imm_base update form M3
(gp) Id8.fill.Idhint rq =[r4] fill_form, no_base update form M1
(gp) Id8.fill.ldhint rq=[r3], rso fill_form, reg_base update form M2
(gp) Id8-fill.ldnhint rq = [r3], immg fill_form, imm_base update form M3

Description: A value consisting of sz bytesis read from memory starting at the address specified by the value in GR r5.
The value is then zero extended and placed in GR rq. The values of the sz completer are given in
Table 6-26. The NaT bit corresponding to GR r is cleared, except as described below for speculative
loads. The Idtype completer specifies specia |oad operations, which are described in Table 6-27.

For the fill_form, an 8-byte value is loaded, and a bit in the UNAT application register is copied into the
target register NaT bit. This instruction is used for reloading a spilled register/NaT pair. See “Control
Speculation” on page 4-10 for details.

In the base update forms, the value in G added to either a signed immediate valmeng) or a value
from GRr,, and the result is placed back in GRThis base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit corresponding i® GR
set, then the NaT bit corresponding to GRS set and no fault is raised.

Table 6-26. sz Completers

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Table 6-27. Load Types

Idtype . _ _
Completer Inter pretation Special L oad Operation
none Normal load
s Speculativeload | Certain exceptions may be deferred rather than generating a fault. Deferral

causes the target register’s NaT bit to be set. The NaT bit is later used to
detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative attribute,
the target register and NaT bit is cleared, and the processor ensures that no
ALAT entry exists for the target register. The absence of an ALAT entry is
later used to detect deferral or collision.
sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load | Deferral causes the target register’s NaT bit to be set, and the processor
ensures that no ALAT entry exists for the target register. The absence of an
ALAT entry is later used to detect deferral or collision.
c.nc Check load The ALAT is searched for a matching entry. If found, no load is done and

- ho clear the target register is unchanged. Regardless of ALAT hit or miss, base|regis-
ter updates are performed, if specified. An implementation may optionally
cause the ALAT lookup to fail independent of whether an ALAT entry
matches. If not found, a load is performed, and an entry is added to the
ALAT (unless the referenced data page has a non-speculative attribute, in
which case no ALAT entry is allocated). T

HP/Intel |IA-64 Instruction Reference 6-101

IA-64 Application ISA Guide 1.0

Table 6-27. Load Types (Continued)

Colrcri:gllaeeter I nterpretation Special L oad Operation
c.clr Check load The ALAT is searched for amatching entry. If found, the entry is removed,
- clear no load is done and the target register is unchanged. Regardless of ALAT hit
or miss, base register updates are performed, if specified. An implementa-
tion may optionally cause the ALAT lookup to fail independent of whether
an ALAT entry matches. If not found, a clear check load behaves like anor-
mal load.
c.clracq Ordered check This type behaves the same as the unordered clear form, except that the
load —clear ALAT lookup (and resulting load, if no ALAT entry isfound) is performed
with acquire semantics.
acq Ordered load An ordered load is performed with acquire semantics.
bias Biased load A hint is provided to the implementation to acquire exclusive ownership of
the accessed cache line.

For more details on ordered, biased, speculative, advanced and check loads see “Control Speculation” on
page 4-10 and “Data Speculation” on page 4-12. For more details on ordered loads see “Memory Access
Ordering” on page 4-18. See “Memory Hierarchy Control and Consistency” on page 4-16 for details on
biased loads.

For the non-speculative load types, if NaT bit associated with 381, a Register NaT Consumption

fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated withiSR the NaT bit associated

with GRr3 is set to 1 and no fault is raised.

The value of thedhint completer specifies the locality of the memory access. The values lahthe
completer are given in Table 6-28. A prefetch hint is implied in the base update forms. The address speci-
fied by the value in GR5 after the base update acts as a hint to prefetch the indicated cache line. This
prefetch uses the locality hints specifiedidiyint. Prefetch and locality hints do not affect program func-
tionality and may be ignored by the implementation. See “Memory Hierarchy Control and Consistency”
on page 4-16 for details.

Table 6-28. Load Hints

Idhint Completer I nter pretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nta No temporal locality, all levels

In the no_base_update form, the value intgR not modified and no prefetch hint is implied.

For the base update forms, specifying the same register addressidn; will cause an lllegal Operation
fault.

6-102

IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Id

Operation: if (PR gp]) {
size = fill _form? 8 : sz
specul ative = (/dtype=="s'|| | dt ype =="'sa’);
advanced=([/dtype=="a|| | dt ype == 'sa’);
check_clear = (| dt ype=="c.clr || | dt ype == ‘c.clr.acq);
check_no_clear = (| dt ype ==‘c.nc’);
check = check_clear || check_no_clear;
acquire = (I dt ype =="acq’ || | dt ype =="‘c.clr.acq’);

bias=([dtype=="bias’) ? BIAS:0;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced)itype |= ADVANCE ;

if ((reg_base_update_form || imm_base_update_form) && (r{== rj))
illegal_operation_fault();

check_target_register(r 1, itype);

if (reg_base_update_form || imm_base_update_form)
check_target_register(ra);

if (reg_base_update_form) {
tmp_r2=GR[r];
tmp_r2nat=GR[r].nat;

}
if ('speculative && GR[r 3].nat) // fault on NaT address
register_nat_consumption_fault(itype);
defer = speculative && (GR[r gl.nat || PSR.ed);// defer exception if spec
if (check && alat_cmp(GENERAL, ro{ /I no load on Id.c & ALAT hit
if (check_clear) I/l remove entry on Id.c.clr or Id.c.clr.acq
alat_inval_single_entry(GENERAL, ro);
}else {
if ('defer) {
paddr = tlb_translate(GR[r 3], size, itype, PSR.cpl, &maittr,
&defer);
if ('defer) {
otype = acquire ? ACQUIRE : UNORDERED;
val = mem_read(paddr, size, UM.be, mattr, otype, bias | | dhi nt);
}
if (check_clear || advanced) /I remove any old ALAT entry
alat_inval_single_entry(GENERAL, ro);
if (defer) {
if (speculative) {
GR(r 4] = natd_gr_read(paddr, size, UM.be, mattr, otype,
bias | I dhi nt);
GR[r j].nat=1;
}else{
GR[r41=0; //'ld.a to sequential memory
GR[r 4].nat = 0;
}else{ /I execute load normally
if (fill_form) { /I fill NaT on Id8 fill
bit_ pos=GR[r3|{8:3};
GR(r ;] = val
GR{r ;].nat = AR[UNAT]{bit_pos}
}else{ /I clear NaT on other types
GR(r ;] = zero_ext(val, size * 8);
GR[r 4].nat = 0;
if ((check_no_clear || advanced) && ma_is_speculative(mattr))
/I add entry to ALAT
alat_write(GENERAL, r 1, paddr, size);
}
}

HP/Intel |IA-64 Instruction Reference 6-103

Id IA-64 Application ISA Guide 1.0

if (inmmbase_update_forn { /1 update base register
Rrgl = GRrg + sign_ext(immy, 9);
GRrg.nat = GR[rg.nat;
} else if (reg_base_update form {
Rrg = Rrg +tnp_rz;
GRrgl.nat = GR[rg.nat || tnp_r2nat;

if ((reg_base update_form || inmbase update_forn) & & !GRr3].nat)
nmeminplicit_prefetch(GRrz, bias | /dhint);

6-104 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Idf

Floating-Point Load

Format:

Description:

(gp) Idffsz.fldtype.ldhint f; =[r4] no_base update form M6
(gp) Idffsz.fldtype.ldhint f; =[ra], o reg_base update form M7
(gp) Idffsz.fldtypeldhint f; =[rs], immg imm_base update form M8
(gp) Idf8.fldtype.ldhint f; =[r4] integer_form, no_base update form M6
(gp) Idf8.fldtype.ldhint f; =[r3], ro integer_form, reg_base update form M7
(gp) Idf8.fldtype.ldhint f; = [r3], immg integer_form, imm_base update form M8
(gp) Idf fill.ldhint f; =[r4] fill_form, no_base update form M6
(gp) Idf fill.ldhint f; =[rg], ro fill_form, reg_base update form M7
(gp) Idf.fill.ldhint f; =[r3], immg fill_form, imm_base update form M8

A value consisting of fsz bytesisread from memory starting at the address specified by thevaluein GR r3.

The value is then converted into the floating-point register format and placed in FR f;. See “Data Types
and Formats” on page 5-1for details on conversion to floating-point register format. The valuesaf the
completer are given in Table 6-29. THdtype completer specifies special load operations, which are
described in Table 6-30.

For the integer_form, an 8-byte value is loaded and placed in the significand field,of/ffout conver-
sion. The exponent field of FR is set to the biased exponent for%8 (Mx1003E) and the sign field of FR
f, is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed,iwkidut conver-
sion. This instruction is used for reloading a spilled register. See “Control Speculation” on page 4-10for
details.

In the base update forms, the value in G added to either a signed immediate valmeng) or a value
from GRr,, and the result is placed back in GRThis base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit corresponding i® GR
set, then the NaT bit corresponding to GRS set and no fault is raised.

Table 6-29. fsz Completers

fsz Completer Bytes Accessed Memory For mat
S 4 bytes Single precision
d 8 bytes Double precision
e 10 bytes Extended precisio

Table 6-30. FP Load Types

C(I;Irggllpet?er I nterpretation Special L oad Operation
none Normal load
Certain exceptions may be deferred rather than generating a fault. Deferral
s Speculative load causes NaTVal to be placed in the target register. The NaTVal vaueislater

used to detect deferral.
An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-specul ative attribute,
no ALAT entry is added to the ALAT and the target register is set asfol-
a Advanced load| lows: for theinteger_form, the exponent is set to 0x1003E and the sign and
significand are set to zero; for al other forms, the sign, exponent and sig-
nificand are set to zero. The absence of an ALAT entry islater used to
detect deferral or collision.
An entry is added to the ALAT, and certain exceptions may be deferred.
Speculative | Deferral causes NaTVal to be placed in the target register, and the proces-
Advanced load | sor ensuresthat no ALAT entry exists for the target register. The absence of
an ALAT entry islater used to detect deferral or collision.

Sa

HP/Intel

IA-64 Instruction Reference 6-105

Idf IA-64 Application ISA Guide 1.0

Table 6-30. FP Load Types (Continued)

fldtype

Completer I nter pretation Special L oad Operation

The ALAT is searched for amatching entry. If found, no load is done and
the target register is unchanged. Regardless of ALAT hit or miss, base reg-
Check load - ister updates are performed, if specified. An implementation may option-
c.nc no clear ally cause the ALAT lookup to fail independent of whether an ALAT entry
matches. If not found, aload is performed, and an entry is added to the
ALAT (unless the referenced data page has a non-speculative attribute, in
which case no ALAT entry is allocated).
The ALAT is searched for amatching entry. If found, the entry isremoved,
no load is done and the target register is unchanged. Regardless of ALAT
Check load — | hit or miss, baseregister updates are performed, if specified. Animplemen-
clear tation may optionally cause the ALAT lookup to fail independent of
whether an ALAT entry matches. If not found, a clear check load behaves
like anormal load.

c.clr

For more details on speculative, advanced and check loads see “Control Speculation” on page 4-10 and
“Data Speculation” on page 4-12.

For the non-speculative load types, if NaT bit associated with;GR1, a Register NaT Consumption

fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated withiSR the NaT bit associated

with GRr3is set to 1 and no fault is raised.

The value of thédhint modifier specifies the locality of the memory access. The mnemonic values of
Idhint are given in Table 6-28 on page 6-102. A prefetch hint is implied in the base update forms. The
address specified by the value in Gfafter the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specifieddhynt. Prefetch and locality hints do not affect pro-
gram functionality and may be ignored by the implementation. See “Memory Hierarchy Control and Con-
sistency” on page 4-16 for details.

In the no_base_update form, the value intG#k not modified and no prefetch hint is implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification faf FR

6-106 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

|df

Operation: if (PR gp]) {
size = (fill _form? 16 : (integer form? 8 : fsz));
specul ative = (fldtype=="5|| fldtype =="'sa);
advanced=(fldtype=="a'|| fl dt ype =="'sa’);
check_clear = (fldtype=="‘cclr);
check _no_clear = (fl dt ype ==‘c.nc’);

check = check_clear || check_no_clear;
itype = READ;

if (speculative) itype |= SPEC ;

if (advanced) itype |= ADVANCE ;

if (reg_base_update_form || imm_base_update_form)

check_target register(ra);
fp_check_target_register(f o)
if (tmp_isrcode = fp_reg_disabled(f1,0,0,0))
disabled_fp_register_fault(tmp_isrcode, itype);
if (Ispeculative && GR][r z].nat) // fault on NaT address
register_nat_consumption_fault(itype);
defer = speculative && (GR[r gl.nat || PSR.ed);// defer exception if spec
if (check && alat_cmp(FLOAT, f){ // o load on Idf.c & ALAT hit
if (check_clear) /I remove entry on Idf.c.clr
alat_inval_single_entry(FLOAT, fo);
}else{
if (Idefer) {
paddr = tlb_translate(GR[r 3], size, itype, PSR.cpl, &maittr,
&defer);
if (Idefer)
val = mem_read(paddr, size, UM.be, mattr, UNORDERED, I dhi nt);
if (check_clear || advanced) /l remove any old ALAT entry
alat_inval_single_entry(FLOAT, fo);
if (speculative && defer) {
FR[f ;] = NATVAL;
} else if (advanced && !speculative && defer) {
FR[f ;] = (integer_form ? FP_INT_ZERO : FP_ZERO);
}else { Il execute load normally
FR[f 4] = fp_mem_to_fr_format(val, size, integer_form);
if ((check_no_clear || advanced) && ma_is_speculative(mattr))
/l add entry to ALAT
alat_write(FLOAT, f 1, paddr, size);
}
}
if (imm_base_update_form) { /I update base register
GR[r 3] =GR[r 3] + sign_ext(i mmy, 9);
GR[rg.nat=GR[rgl.nat;
} else if (reg_base_update_form) {
GR[r3=GR[r3+GR[r
GR[rg.nat=GR[rgl.nat|| GR[r 7].nat;
if ((reg_base_update_form || imm_base_update_form) && !GR[r z].nat)

mem_implicit_prefetch(GR[rzl, Idhint);

fp_update_psr(f);

HP/Intel |IA-64 Instruction Reference

6-107

Idfp

IA-64 Application ISA Guide 1.0

Floating-Point Load Pair

Format:

Description:

Operation:

(gp) Idfps.fidtypeldhint fq, f, =[r3] single form, no_base update foom M11
(gp) Idfps.fldtype.ldhint fq, f, =[r3], 8 single form, base update foom M12
(gp) Idfpd.fldtype.ldhint fq, f, =[r4] double form, no_base update foorm M1l
(gp) Idfpd.fldtype.ldhint fq, f, =[r3], 16 double form, base update form M12
(gp) Idfp8.fldtype.ldhint fq, f; =[r4] integer_form, no_base update form M11
(gp) Idfp8.fldtype.ldhint fq, f, =[r3], 16 integer_form, base update form M12

Eight (single_form) or sixteen (double form/integer form) bytes are read from memory starting at the
address specified by the value in GR r5. The value read is treated as a contiguous pair of floating-point
numbers for the single_form/double form and asinteger/Parallel FP data for the integer_form. Each num-

ber is converted into the floating-point register format. The value at the lowest address is placed in FR fy,

and the value at the highest address is placed in FR f,. See “Data Types and Formats” on page 5-1 for
details on conversion to floating-point register format. fltieype completer specifies special load opera-
tions, which are described in Table 6-30 on page 6-105.

For more details on speculative, advanced and check loads see “Control Speculation” on page 4-10 and
“Data Speculation” on page 4-12.

For the non-speculative load types, if NaT bit associated withGR1, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred.

In the base_update_form, the value in GRs added to an implied immediate value (equal to double the
data size) and the result is placed back inrgRhis base register update is done after the load, and does
not affect the load address.

The value of thédhint modifier specifies the locality of the memory access. The mnemonic values of
Idhint are given in Table 6-28 on page 6-102. A prefetch hint is implied in the base update form. The
address specified by the value in Gfafter the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specifieddhynt. Prefetch and locality hints do not affect pro-
gram functionality and may be ignored by the implementation. See “Memory Hierarchy Control and Con-
sistency” on page 4-16 for details.

In the no_base_update form, the value intG#k not modified and no prefetch hint is implied.
The PSR.mfl and PSR.mfh bits are updated to reflect the modification fafdfi@ FRf,.

There is a restriction on the choice of target registers. Register spdgiiedf, must specify one odd-
numbered physical FR and one even-numbered physical FR. Specifying two odd or two even registers
will cause an lllegal Operation fault to be raised. The restriction is on physical register numbers after reg-
ister rotation. This means thatfif andf, both specify static registers or both specify rotating registers,
thenf; andf, must be odd/even or even/oddf;lfandf, specify one static and one rotating register, the
restriction depends on CFM.rrb.fr. If CEM.rrb.fr is even, the restriction is the $aamelf, must be odd/

even or even/odd. If CFM.rrb.fr is odd, thigrandf, must be even/even or odd/odd. Specifying one static
and one rotating register should only be done when CFM.rrb.fr will have a predictable value (such as 0).

if (PRgp]) {
size = single_form? 8 : 16;
specul ative = (fldtype=="s"|| fldtype =="'sa);
advanced=(fldtype=="a'|| fl dt ype =="'sa’);
check_clear = (fldtype =="‘c.clr);
check _no_clear = (fl dt ype ==‘c.nc’);

check = check_clear || check_no_clear;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE;

if (fp_reg_bank_conflict(f1, f2))
illegal_operation_fault();

6-108 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Idfp

if (base_update form
check_target_register(ry);

fp_check_target_register(f;);
fp_check_target_register(f));
if (tnp_isrcode = fp_reg_disabled(f;, f, 0, 0))

di sabled fp register fault(tnp_isrcode, itype);

if (!speculative & CGR{r3].nat) /1 fault on NaT address
regi ster_nat_consunption_faul t(itype);
defer = speculative & (GR[rg.nat || PSR ed);// defer exception if spec
if (check & al at _cnmp(FLOAT, f;)) { /1 no load on ldfp.c & ALAT hit
i f (check_clear) /1l remove entry on Idfp.c.clr
al at _i nval _singl e_entry(FLQAT, f,);
} else {
if (!defer) {
paddr = tlb_translate(GRr3, size, itype, PSRcpl, &mattr,
&defer);
if (!defer)

val = nmemread(paddr, size, UMbe, mattr, UNORDERED, /dhint);

if (check_clear || advanced) /1 renmove any ol d ALAT entry
al at _i nval _si ngl e_entry(FLQOAT, f,);

if (speculative & defer) {
FRIf;] = NATVAL;
FR f,] = NATVAL;

} else if (advanced && !specul ative & defer) {

FRIf;] = (integer_form? FP_INT_ZERO : FP_ZERO;
FRIf,] = (integer_form? FP_INT_ZERO : FP_ZERO);

} else { I/ execute load normally
if (UMbe) {

FRIf;] = fp_memto_fr_format(val u>> (size/2*8), sizel?2,
integer _form;

FRIf] = fp_memto_fr_format(val, size/2, integer_form;
} else {
FRIf;] = fp_memto_fr_format(val, size/2, integer_form;
FRIf] = fp_memto_fr_format(val u>> (size/2*8), sizel?2,
i nteger_forn);
}
if ((check_no_clear || advanced) && ma_is_specul ative(nattr))
// add entry to ALAT
al at _wite(FLQAT, f;, paddr, size);
}
}
if (base_update form { /'l update base register
CRirg = GRrg + size;
CRrg.nat = GR[rg.nat;
if (1CRrg.nat)
mem.inplicit_prefetch(Grs], /dhint);
}

fp_update_psr(fy);
fp_update_psr(f,);

HP/Intel |IA-64 Instruction Reference 6-109

Ifetch IA-64 Application ISA Guide 1.0

Line Prefetch

Format: (gp) Ifetch.Iftype.lfhint [rs] no_base update form M13
(gp) Ifetch.Iftype.lfhint [ra], ro reg _base update foom M14
(gp) Ifetch.Iftypelfhint [rs], immg imm_base update form M15
(gp) Ifetch.Iftype.excl.Ifhint [rq] no_base update form, exclusive form M13
(gp) Ifetch.Iftype.excl.Ifhint [rg], ro reg _base update form, exclusive foom M14
(gp) Ifetch.Iftype.excl.Ifhint [rg], immg imm_base update form, exclusive foom M15

Description: The line containing the address specified by the value in GR r3 is moved to the highest level of the data
memory hierarchy. The value of the Ifhint modifier specifies the locality of the memory access. The mne-
monic values of Ifhint are given in Table 6-32.

The behavior of the memory read is also determined by the memory attribute associated with the accessed
page. Line size isimplementation dependent but must be a power of two greater than or equal to 32 bytes.
In the exclusive form, the cache line is allowed to be marked in an exclusive state. This qualifier is used
when the program expects soon to modify alocation in that line. If the memory attribute for the page con-
taining the lineis not cacheable, then no reference is made.

The completer, Iftype, specifies whether or not the instruction raises faults normally associated with areg-
ular load. Table 6-31 defines these two options.

Table 6-31. Iftype Mnemonic Values

Iftype Mnemonic Interpretation
none Ignore faults
fault Raise faults

In the base update forms, after being used to address memory, the value in GR r is incremented by either
the sign extended value in immg (in the imm_base update form) or the value in GR r, (in the
reg_base update_form). In the reg_base update form, if the NaT bit corresponding to GR r, is set, then
the NaT bit corresponding to GR r3 is set — no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit corresponding te GR
clear, then the address specified by the value im{ier the post-increment acts as a hint to implicitly
prefetch the indicated cache line. This implicit prefetch uses the locality hints specififiiinbyThe

implicit prefetch does not affect program functionality, does not raise any faults, and may be ignored by
the implementation.

In the no_base_update_form, the value inrgR not modified and no implicit prefetch hint is implied.

If the NaT bit corresponding to GR; is set then the state of memory is not affected. In the
reg_base_update_form and imm_base_update_form, the post increment raf iSRerformed and
prefetch is hinted as described above.

Table 6-32. Ifhint Mnemonic Values

Ifhint Mnemonic Interpretation
none Temporal locality, level 1
ntl No temporal locality, level 1
nt2 No temporal locality, level 2
nta No temporal locality, all levels

6-110 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Ifetch

Operation: if (PR gp]) {
i type = READ| NON_ACCESS;
itype | = (/ftype=="fault) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)

check_target_register(r3);
if ([ftype=="ault){ /l faulting form
if (GR[rg].nat && 'PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);

}

if (exclusive_form)

excl_hint = EXCLUSIVE;
else

excl_hint =0;

if IGR[rgl.nat && !PSR.ed) {// faulting form already faulted if r zis nated
paddr = tlb_translate(GR[r 3, 1, itype, PSR.cpl, &maitr, &defer);
if (\defer)
mem_promote(paddr, mattr, I fhi nt |excl_hint);

}

if imm_base_update_form) {
GR[r g =GR[r]+ sign_ext(i my, 9);
GR[rgl.nat=GR[rgl.nat;
} else if (reg_base_update_form) {
GR[r3]=GR[r3+GR[r;
GR[rg.nat=GR[rj.nat| GR[r zl.nat;
}

if ((reg_base_update_form || imm_base_update_form) && !GR[r z].nat)
mem_implicit_prefetch(GR[rzl, [fhint |excl_hint);

HP/Intel |IA-64 Instruction Reference 6-111

mf IA-64 Application ISA Guide 1.0

Memory Fence

Format: (gp) mf ordering_form M24
(gp) mf.a acceptance form M24

Description: This instruction forces ordering between prior and subsequent memory accesses. The ordering_form
ensures al prior data memory accesses are made visible prior to any subsequent data memory accesses
being made visible. It does not ensure prior data memory references have been accepted by the external
platform, nor that prior data memory references are visible.

The acceptance form prevents any subsequent data memory accesses by the processor from initiating
transactions to the external platform until:

« all prior loads have returned data, and
« all prior stores have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance_form is typically used to ensure the
processor has “waited” until a memory-mapped IO transaction has been “accepted”, before initiating addi-
tional external transactions. The acceptance_form does not ensure ordering.

Operation: if (PR gp]){
if (acceptance_form
acceptance_fence();
el se
ordering_fence();

6-112 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 mix

Mix

Format: (ap) mixLl ry=ry 13 one_byte form, left form 12
(ap) mix2.l ry=ry 13 two_byte form, left_form 12
(ap) mix4l ry=ry 3 four_byte form, left_ form 12
(gp) Mix1.r rqy=rop,rs one_byte form, right_form 12
(gp) MixX2.r ry=ro,rs two_byte form, right_form 12
(gp) Mix4.r ry=ro,rs four_byte form, right_form 12

Description: The data elements of GR r, and r5 are mixed as shown in Figure 6-23, and the result placed in GRr4. The
data elements in the source registers are grouped in pairs, and one element from each pair is selected for
the result. In the left_form, the result is formed from the leftmost elements from each of the pairs. In the
right_form, the result is formed from the rightmost elements. Elements are selected alternately from the
two source registers.

HP/Intel |IA-64 Instruction Reference 6-113

mix

IA-64 Application ISA Guide 1.0

GR o

GR o

GRry:

GRry:

GR o

GR ol

mix4.r

Figure 6-23. Mix Example

6-114

IA-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0

mix

Operation: if (PRIgp]) {
check_target _register(ry);

if (one_byte form {

x[0] = GRry]{7:0}; y[0] = GRrg{7:0};
x[1] = GRr]{15:8}); y[1] = GRrz{15:8};
x[2] = CGRr]{23:16}; y[2] = &R rg {23: 16};
x[3] = GRr] {31:24}; y[3] = G rg {31:24};
x[4] = GRr;]{39:32}; y[4] = GRr3{39:32};
X[5] = CGRr]{47:40}; y[5] = GR{rg {47:40};
x[6] = GRrj]{55:48}; y[6] = GRr3{55: 48};
x[7] = GRro{63:56}; y[7] = GRr3{63:56};
if (left_form

GR r ;] = concatenate8(x[7], y[7], x[5], y[5],
| x[3], y[3], x[1], y[1]);
el se

GR r ;] = concatenate8(x[6], y[6], x[4], y[4],
x(2], y[2], x[0], y[OQ]);

} else if (two_byte forn {

X[0] = GRr;]{15:0}; y[0] = GRrg {15 0};
X[1] = GRrj{31:16}; y[1] = GRr3{31: 16};
x[2] = GRrj{47:32}; y[2] = GRrgl{47:32};
x[3] = GRIr;1{63:48); y[3] = GRr3l{63:48};

if (left_form

GR[r ;] = concatenate4(x[3], y[3], x[1], y[1]);

el se

GR r ;] = concatenate4(x[2], y[2], x[0], y[0]);

} else {
x[0] = GRr] {31:0}; y[0] = GR{r3 {31:0};
x[1] = GRr] {63:32}; y[1] = GRr3{63:32};

if (left_form

GR[r ;] = concatenate2(x[1], y[1]);
el se

GR[r ;] = concatenate2(x[0], y[O]);

}
GRrqjl.nat = GR[ry.nat || GRrg.nat;

/1 one-byte el enents

/1 two-byte el enents

Il four-byte elenents

HP/Intel |IA-64 Instruction Reference

6-115

mov ar

IA-64 Application ISA Guide 1.0

Move Application Register

Format:

Description:

(gp) mov rq=ary pseudo-op
(gp) mov arz=r, pseudo-op
(gp) mov arz =immg pseudo-op
(gp) mov.i rq=ars i_form, from_form 128
(gp) mov.i arz=r, i_form, register form, to_form 126
(gp) mov.i arz=immg i_form, immediate form, to_form 127
(gp) mov.m rq=ars m_form, from form M31
(gp) mov.m arz=r, m_form, register form,to foom M29
(gp) mov.m arz =immg m_form, immediate form,to foom M30

The source operand is copied to the destination register.

In the from_form, the application register specified by aryis copied into GR r, and the corresponding NaT
bit is cleared.

In the to_form, the value in GR r, (in the register_form), or the sign extended value in immg (in the
immediate_form), is placed in AR ars. In the register_form if the NaT bit corresponding to GR r is set,
then a Register NaT Consumption fault is raised.

Only a subset of the application registers can be accessed by each execution unit (M or I). Table 3-3 on
page 3-5 in indicates which application registers may be accessed from which execution unit type. An
access to an application register from the wrong unit type causes an lllegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for specifying the exe-
cution unit. Accesses of the ARs are aways implicitly serialized. While implicitly serialized, read-after-
write and write-after-write dependencies must be avoided (e.g., setting CCV, followed by cnpxchg in the
same instruction group, or simultaneous writes to the UNAT register by 1 d. fi | | and mov to UNAT).

6-116 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 mov ar

Operation: if (PR gp]) {
tnp_type = (i _form? ARI|_TYPE : AR M TYPE);
if (is_reserved_reg(tnp_type, arg))
illegal _operation_fault();

if (fromform {
check_target_register(ry);
if (((arz == BSPSTORE) || (arz == RNAT)) && (AR[RSC].node != 0))
illegal operation fault();

if (arg==1TC & PSR si && PSR cpl != 0)
privileged register fault();

GRrgj] = (is_ignored_reg(arz) ? 0: AR arg;
R rq .nat = 0;

} else { [l to_form
tmp_val = (register_form) ? GRro] : sign_ext(/inmg 8);

if (arz == BSP)
illegal operation fault();

if (((arz == BSPSTORE) || (arz == RNAT)) && (AR[RSC].node != 0))
illegal operation fault();

if (register_formé&& GRr].nat)
regi ster_nat _consunption_faul t (0);

if (is_reserved_fiel d(AR TYPE, ars tnp_val))
reserved_register field fault();

if ((is_kernel _reg(ars) || arz ==1TC) && (PSR cpl != 0))
privileged register fault();

if (lis_ignored_reg(arg) {
trmp_val = ignored_field_mask(AR TYPE, arj tnp_val);
/1 check for illegal pronotion
if (arz == RSC && tnp_val {3:2} u< PSR cpl)
tnp_val {3:2} = PSR cpl;
ARl arz] = tnp_val;

if (arz == BSPSTORE) {
AR[BSP] = rse_update_internal _stack_pointers(tnp_val);
AR[RNAT] = undefined();

HP/Intel |IA-64 Instruction Reference 6-117

mov br

IA-64 Application ISA Guide 1.0

Move Branch Register

Format:

Description:

Operation:

(gp) mov ry =Dy from_form 122
(ap) mov by=r, to_form 121
(gp) mov.retby =r, return_form, to_form 121

The source operand is copied to the destination register.

In the from_form, the branch register specified by b, is copied into GR r4. The NaT bit corresponding to
GR 4 iscleared.

Intheto_form, the valuein GR r, is copied into BR by. If the NaT bit corresponding to GRr, is 1, then a
Register NaT Consumption fault is taken.

if (PRgpl) {

if (fromform ({
check_target_register(ry);
R ri = BRb;
R r] .nat = 0;

} else { /] to form
if (R rj.nat)

regi ster_nat _consunption_faul t (0);

BRIb; = GRrjl;

6-118 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

mov fr

Move Floating-Point Register
Format: (gp) mov fy =13

Description: Thevalue of FR f;is copied to FR f;.

Operation: See “Floating-Point Merge” on page 6-49.

pseudo-op of: (qp) fmerges f; =fa, fa

HP/Intel |IA-64 Instruction Reference

6-119

mov gr

IA-64 Application ISA Guide 1.0

Move General Register

Format: (gp) mov rq=r5

Description: Thevalue of GRryiscopiedto GR ;.

Operation: See “Add” on page 6-3.

pseudo-op of: (qp) adds rq =0, r3

6-120 I|A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 mov imm

Move Immediate
Format: (gp) mov rq =immy, pseudo-op of: (gp) addl rq =immy,, r0
Description: Theimmediate value, immy,, is sign extended to 64 bits and placed in GRr.

Operation: See “Add” on page 6-3.

HP/Intel |IA-64 Instruction Reference 6-121

mov indirect IA-64 Application ISA Guide 1.0

Move Indirect Register

Format:

Description:

Operation:

(gp) mov rq =ireg[rs] from form M43

The source operand is copied to the destination register.

For move from indirect register, GR r isread and the value used as an index into the register file specified
by ireg (see Table 6-33 below). The indexed register isread and its value is copied into GRr.

Table 6-33. Indirect Register File Mnemonics

ireg Register File
cpuid Processor | dentification Register
pmd Performance Monitor Data Register

Bits{7:0} of GR r5 are used as the index. The remainder of the bits are ignored.

Apart from the PMD register file, access of a non-existent register results in a Reserved Register/Field
fault. All accesses to the implementation-dependent portion of the PMD register file result in implementa-
tion dependent behavior but do not fault.

if (PRqpl) {
tnp_index = GRr3 {7:0};

if (fromform {
check_target _register(ry);

if (R rg.nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved reg(ireg, tnp_index))
reserved_register_field fault();

if (ireg == PMD_TYPE) {
GR r] = pnd_read(tnp_i ndex);
} else
switch (ireg) {
case CPUD TYPE: GRrl1] = CPU D tnp_index]; break;

}
&R rq .nat = 0;

6-122 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 mov ip

Move Instruction Pointer

Format: (gp) mov rq=ip 125

Description: The Instruction Pointer (1P) for the bundle containing thisinstruction is copied into GR r4.

Operation: if (PRgp]) {
check_target _register(ry);

GQ[rI] = 1P
R r] .nat = 0;

HP/Intel |IA-64 Instruction Reference 6-123

mov pr

IA-64 Application ISA Guide 1.0

Move Predicates

Format:

Description:

Operation:

(gp) mov ry = pr from form 125
(gp) mov pr =r,, mask; to_form 123
(gp) mov pr.rot = immy, to_rotate form 124

The source operand is copied to the destination register.
For moving the predicatesto a GR, PR i is copied to bit position i within GR r.

For moving to the predicates, the source can either be a general register, or an immediate value. In the
to_form, the source operand is GR r, and only those predicates specified by the immediate value mask,;
are written. The value mask;; is encoded in the instruction in an immyg field such that: imm; g = mask;; >>
1. Predicate register O is aways one. The mask;; vaue is sign extended. The most significant bit of
mask47, therefore, is the mask bit for all of the rotating predicates. If thereis a deferred exception for GR
ro (the NaT bit is 1), aRegister NaT Consumption fault is taken.

Intheto_rotate form, only the 48 rotating predicates can be written. The source operand is taken from the
immy, operand (which is encoded in the instruction in an immyg field, such that: i mpg = i my, >> 16).
The low 16-bits correspond to the static predicates. The immediate is sign extended to set the top 21 pred-
icates. Bit position i in the source operand is copied to PR i.

This instruction operates as if the predicate rotation base in the Current Frame Marker (CFM.rrb.pr) were
Zero.

if (PRgpl) {
if (fromform ({
check_target _register(ry);
GR[rl]_ = 1;))
for (i =1; i <=63; i++) {
R rq{i} = PR pr_phys_to_virt(i)];

R r] .nat = 0;
} elseif (to form {

if (R rj.nat)

regi ster_nat _consunption_faul t (0);
trp_src = sign_ext(mask;; 17);
for (i =1; i <=63; i++) {

if (tnp_src{i})

PRI pr_phys_to_virt(i)] = Gr{i};

} else { // to_rotate_form
trp_src = sign_ext(immy, 44);
for (i =16; i <= 63; i++) {
PR pr_phys_to_virt(i)] = tnp_src{i};

/1l PRO] is always 1

6-124 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 mov um

Move User Mask

Format: (gp) mov rq = psr.um from form M36
(gp) mov psrum=ry to foom M35

Description: The source operand is copied to the destination register.

For move from user mask, PSR{ 5:0} is read, zero-extend, and copied into GR r.
For move to user mask, PSR{5:0} iswritten by bits{5:0} of GR».

Operation: if (PRgp]) {
if (fromform {
check_target _register(ry);

R r{ = zero_ext (PSR{5:0}, 6);

&R rq .nat = 0;
} else { /1 to_form

if (&Rrj.nat)

regi ster_nat _consunption_faul t (0);

if (is_reserved_fiel d(PSR. TYPE, PSR UM GRrj]))
reserved_register field fault();

PSR{5: 0} = GR[r;]{5:0};

HP/Intel |IA-64 Instruction Reference 6-125

movl IA-64 Application ISA Guide 1.0

Move Long Immediate
Format: (gp) movl rq=immg, X2
Description: Theimmediate value immg, is copied to GR r4. The L slot of the bundle contains 41 bits of immg,.

Operation: if (PRgp]) {
check_target _register(ry);

R rg = immyg
R r] .nat = 0;

6-126 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 mux

Mux

Format:

Description:

(gp) muxl1 rq =r,, mbtypey one_byte form 13
(gp) mux2 rq =r,, mhtypeg two_byte form 14

A permutation is performed on the packed elements in a single source register, GR r,, and the result is
placed in GRr4. For 8-bit elements, only some of all possible permutations can be specified. The five pos-
sible permutations are given in Table 6-34 and shown in Figure 6-24.

Table 6-34. Mux Permutations for 8-bit Elements

mbtype, Function
@rev Reverse the order of the bytes
@mix Perform a Mix operation on the two halves of GRr,
@shuf Perform a Shuffle operation on the two halves of GR r,
@alt Perform an Alternate operation on the two halves of GR r,
@brest Perform a Broadcast operation on the least significand byte of GRr,

GR r2: GR r2:
GRrq: GRrq:
muxl1rl=r2, @rev
GR ol GR ro!
GR rl: GR r]_:
mux1rl =r2, @shuf muxl1rl=r2, @alt
GRry:

GRry:

muxl1rl =r2, @brcst

Figure 6-24. Mux1 Operation (8-bit elements)

For 16-bit elements, all possible permutations, with and without repetitions can be specified. They are
expressed with an 8-bit mhtypeg field, which encodes the indices of the four 16-bit data elements. The
indexed 16-bit elements of GR r,, are copied to corresponding 16-bit positionsin the target register GRr.
The indices are encoded in little-endian order. (The 8 bits of mhtypeg[7:0] are grouped in pairs of bits and
named mhtypeg[3], mhtypeg[2], mhtypeg[1], mhtypeg[0] in the operation section).

HP/Intel

IA-64 Instruction Reference 6-127

mux IA-64 Application ISA Guide 1.0

GRry: GRry:
GRry: GRry:

mux2 rl = r2, 0x8b (shuffle 10 00 11 01) mux2 rl =r2, 0x1b (reverse 00 01 10 11)

GR ol GR ol
GR re GR I

mux2 rl =r2, Oxe4 (alternate 11 01 10 00) mux2 rl = r2, Oxaa (broadcast 10 10 10 10)

Figure 6-25. Mux2 Examples (16-bit elements)

6-128 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 mux
Operation: if (PR gp]) {
check_target_register(ry);
if (one_byte form {
X[0] = GRro]{7:0};
X[1] = Gr]{15:8};
x[2] = CGRr]{23:16};
x[3] = G ro){31:24};
x[4] = R r) {39:32};
X[5] = CGRr]{47:40};
x[6] = GRr,]{55:48};
x[7] = R r,]{63:56};
switch (nbtype) {
case ‘@rev'’:
GR{r 4] = concatenate8(x[0], x[1], x[2], X[3],
X[4], x[5], x[6], X[7]);
break;
case ‘@mix’:
GR(r 1] = concatenate8(x[7], x[3], x[5], x[1],
X[6], x[2], x[4]. X[]);
break;
case ‘@shuf’
GR{r 4] = concatenate8(x[7], x[3], x[6], X[2],
X[5], x[1], x[4], X[0]);
break;
case ‘@alt”:
GR{r 4] = concatenate8(x[7], x[5], x[3], X[1],
X[6], x[4], x[2], X[0]);
break;
case ‘@brcst’:
GR{r 4] = concatenate8(x[0], x[0], x[0], x[O],
X[0], x[0], x[0], X[0);
break;
}
}else { /I two_byte form
x[0]=GR[r}{15:0}
X[1]=GR[r}{31:16};
X[2]=GR[r|{47:32};
X[3]=GR[r|{63:48};
res[0] = x[mhtype8{1:0}];
res[1] = x[mhtype8{3:2}];
res[2] = x[mhtype8{5:4}];
res[3] = x[mhtype8{7:6}];
GR(r 4] = concatenate4(res[3], res[2], res[1], res[0]);
}
GR[r lnat=GR[rj.nat;
HP/Intel 1A-64 Instruction Reference 6-129

nop IA-64 Application ISA Guide 1.0

No Operation

Format: (gp) nop immy, pseudo-op
(gp) nop.i immyq i_unit_form 119
(gp) nop.b immy, b _unit form B9
(gp) nop.m immyq m_unit form M37
(gp) nop.f immy, f_unit_form F15
(gp) nop.x immg, X_unit_form X1

Description: No operation is done.

The immediate, immy4 or immg,, can be used by software as a marker in program code. It is ignored by
hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of imm,.

This instruction has five forms, each of which can be executed only on a particular execution unit type.
The pseudo-op can be used if the unit type to execute on is unimportant.

Operation: if (PRgp]) {
; I/ no operation
}

6-130 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 or

Logical Or

Format: (gp) or ry=ry 3 register_form Al
(gp) or ry=immg, r3 imm8_form A3

Description: The two source operands are logically ORed and the result placed in GR r;. In the register form the first
operand is GR r; in the immediate form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRry] : sign_ext(inmg 8));
tmp_nat = (register_form? CGRry].nat : 0);

GRrg =tnmp_src | GRr4;
GRrg]l.nat = tnp_nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-131

pack IA-64 Application ISA Guide 1.0

Pack

Format: (ap) pack2.sss ry=ry,r3 two_byte form, signed saturation form 12
(ap) pack2.uss r{=ry, 3 two_byte form, unsigned_saturation_form 12
(ap) packd.sss ry=ry,r3 four_byte form, signed_saturation_form 12

Description: 32-bit or 16-bit elements from GR r, and GR r3 are converted into 16-bit or 8-bit elements respectively,

and the results are placed GR r4. The source elements are treated as signed values. If a source element
cannot be represented in the result element, then saturation clipping is performed. The saturation can
either be signed or unsigned. If an element is larger than the upper limit value, the result is the upper limit
value. If itissmaller than the lower limit value, the result isthe lower limit value. The saturation limits are

given in Table 6-35.

Table 6-35. Pack Saturation Limits

pack2

. Sour ce Element Result Element . Upper L ower
Size Width Width saturation | it Limit
2 16 bit 8 hit signed Ox7f 0x80
2 16 bit 8 bit unsigned Oxff 0x00
4 32 hit 16 bit signed Ox 7fff 0x8000
GRr3:

pack4

GRr3:

Figure 6-26. Pack Operation

6-132

IA-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 pack
Operation: if (PR gp]) {
check_target_register(ry);
if (two_byte form { /1 two_byte_form
if (signed_saturation_ form { /1 signed_saturation_form
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
} else { /1 unsigned_saturation_form
max = Oxff;
mn = 0x00;
}
tenp[0] = sign_ext(GRr{15:0}, 16);
tenp[1] = sign_ext (G r;]{31:16}, 16);
tenp[2] = sign_ext (G r,]{47:32}, 16);
tenp[3] = sign_ext (G r;]{63:48}, 16);
tenp[4] = sign_ext(GRr3{15:0}, 16);
tenp[5] = sign_ext (G r3{31:16}, 16);
tenp[6] = sign_ext (G r3]{47:32}, 16);
tenp[7] = sign_ext (G r3]{63:48}, 16);
for (i =0; i <8; i++) {
if (temp[i] > nmax)
temp[i] = nmax;
if (temp[i] < mn)
temp[i] = min;
}
GRr ;] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
tenp[3], tenp[2], tenp[l], tenp[0]);
} else { /1 four_byte form
max = sign_ext (0x7fff, 16); /1 signed_saturation_form
m n = sign_ext (0x8000, 16);
tenp[0] = sign_ext(GRr,]{31:0}, 32);
tenp[1] = sign_ext (G r;]{63:32}, 32);
tenp[2] = sign_ext(GRr3{31:0}, 32);
tenp[3] = sign_ext (G r3{63:32}, 32);
for (i =0; i <4; i++) {
if (tenp[i] > nmax)
tenp[i] = nmax;
if (tenp[i] < min)
tenp[i] = min;
GR[r ;] = concatenate4(tenp[3], tenp[2], tenp[1l], tenp[O]);
}
CGRrqjl.nat = GRry.nat || GRrg.nat;
HP/Intel 1A-64 Instruction Reference 6-133

padd IA-64 Application ISA Guide 1.0

Parallel Add

Format: (gp) paddl ry=ryr3 one_byte form, modulo_form A9
(gp) paddl.sss ry=ryr3 one_byte form, sss_saturation form A9
(gp) paddl.uus rqy=ry,r3 one_byte form, uus_saturation _form A9
(gp) paddl.uuu ry=ry,r3 one_byte form, uuu_saturation_form A9
(gp) padd2 ry=ry,r3 two_byte form, modulo_form A9
(gp) padd2.sss rq=ry, I3 two_byte form, sss_saturation_form A9
(gp) padd2.uus rq=ry,r3 two_byte form, uus_saturation_form A9
(gp) padd2.uuu ry=ry,r3 two_byte form, uuu_saturation form A9
(op) padd4 rq=ry,r3 four_byte form, modulo_form A9

Description: The sets of elements from the two source operands are added, and the results placed in GR r.

If a sum of two elements cannot be represented in the result element and a saturation completer is speci-
fied, then saturation clipping is performed. The saturation can either be signed or unsigned, as given in
Table 6-36. If the sum of two elements is larger than the upper limit value, the result is the upper limit
value. If itissmaller than the lower limit value, the result isthe lower limit value. The saturation limits are

givenin Table 6-37.

Table 6-36. Parallel Add Saturation Completers

Completer | Result rq Treated as
Sss signed

uus unsigned

uuu unsigned

Sourcer, Treated as | Sourcers Treated as
signed signed

unsigned signed

unsigned unsigned

Table 6-37. Parallel Add Saturation Limits

Result r, Signed Result r, Unsigned
Size Element ¥ ¥
Width pper L ower Limit pper Lower Limit
Limit Limit
1 8 hit Oox7f 0x80 Oxff 0x00
2 16 bit Ox7fff 0x8000 Oxffff 0x0000

GRr3:
| |

GRry:
U

GRry:

padd2

Figure 6-27. Parallel Add Examples

6-134

IA-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 padd

Operation: if (PR gp]) {
check_target_register(ry);
if (one_byte form { /] one-byte el ements
x[0] = GRr] {7:0}; y[0] = GRIrg{7:0};
x[1] = GRro{15:8}; y[1] = GRr3{15:8};
x[2] = GRr;]{23:16}; y[2] = GRr3{23:16};
x[3] = GRro{31:24}; y[3] = GRr3{3L: 24};
x[4] = GRr;{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr]{47:40}; y[5] = GRr3]{47:40};
x[6] = GRIr;{55:48}; y[6] = GRr3{55: 48};
x[7] = GRro{63:56}; y[7] = GRr3{63:56};
if (sss_saturation_form { /1 sss_saturation_form
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);

for (i =0; i <8 i++) {
tenp[i] = sign_ext(x[i], 8) + sign_ext(y[i], 8);

} else if (uus_saturation_form { /1 uus_saturation_form
max = Oxff;
mn = 0x00;

for (i =0; i <8; i++) {
temp[i] = zero_ext(x[i], 8) + sign_ext(y[i], 8);

} else if (uuu_saturation_fornm { [/ uuu_saturation_form
max = Oxff;
mn = 0x00;

for (i =0; i <8 i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

} else { /1 modul o_form
for (i =0; i <8 i++) {
tenp[i] zero_ext (x[i], 8) + zero_ext(y[i], 8);

}

if (sss_saturation_form|| uus_saturation_form]|| uuu_saturation_form {
for (i =0; i <8; i++) {
if (temp[i] > max)
tenp[i] = max;

if (temp[i] < min)
tenp[i] = mn;

}
GRr ;] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
tenp[3], tenp[2], tenp[1], tenp[O]);

} else if (two_byte forn { /1 2-byte elenents
x[0] = GRrj{15:0}; y[0] = GRrz{15:0};
X[1] = GRr {31:16}; y[1] = GRr3{31:16};
x[2] = GRry{47:32}; y[2] = GRr3l{47:32};
X[3] = GRr]{63:48}; y[3] = Gr3{63:48};

if (sss_saturation_form { /1 sss_saturation_form
max = sign_ext (0x7fff, 16);
m n = sign_ext (0x8000, 16);

for (i =0; i <4 i++) {
temp[i] = sign_ext(x[i], 16) + sign_ext(y[i], 16);

} else if (uus_saturation_form { /1 uus_saturation_form
max = Oxffff;
mn = 0x0000;

HP/Intel |IA-64 Instruction Reference 6-135

padd IA-64 Application ISA Guide 1.0

for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);

} else if (uuu_saturation form { /1 uuu_saturation_form
max = Oxffff;
m n = 0x0000;

for (i =0; i <4; i++) {
tenp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

} else { /] rmodul o_form
for (i = 0; < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}

if (sss_saturation_form|| uus_saturation_form]|| uuu_saturation_form {
for (i =0; i <4; i++) {
if (tenp[i] > nax)
tenp[i] = max;

if (tenp[i] < min)
tenp[i] = mn;
}
GR[r ;] = concatenate4(tenp[3], tenp[2], tenp[1], tenp[0]);
} else { Il four-byte elenents
x[0] = GRrj{31:0}; y[0] = GRrz{3L: 0};
x[1] = GRr {63:32}; y[1] = GRr3{63:32};
for (i =0; i <2; i++) { /1 nodul o_form
tenp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);
GRr ;] = concatenate2(tenp[1], tenp[O0]);

CGRrgj]l.nat = GR[ry.nat || GRrg.nat;

6-136 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 pavg

Parallel Average

Format: (ap) pavgl ry=ry, 13 normal_form, one_byte form A9
(ap) pavglraz ry=ry,r3 raz_form, one_byte form A9
(ap) pavg2 ry=ry, 13 normal_form, two_byte form A9
(ap) pavg2raz ry=ry,r3 raz_form, two_byte form A9

Description: The unsigned data elements of GR r,, are added to the unsigned data elements of GR r3. The results of the
add are then each independently shifted to the right by one bit position. The high-order bits of each ele-
ment are filled with the carry bits of the sums. To prevent cumulative round-off errors, an averaging is per-

formed. The unsigned results are placed in GR r.

The averaging operation works as follows. In the normal_form, the low-order bit of each result isset to 1
if at least one of the two least significant bits of the corresponding sumis 1. In the raz_form, the average

rounds away from zero by adding 1 to each of the sums.

16-bit sum
pl us
carry

shift right
1 bit

GR re

shift right 1 bit
with average in
| ow order bit

Figure 6-28. Parallel Average Example

HP/Intel |IA-64 Instruction Reference

6-137

pavg

IA-64 Application ISA Guide 1.0

16-bit sum shift right 1 bit
pl us
carry

shift right
1 bit

GRry:

pavg2.raz

Figure 6-29. Parallel Average with Round Away from Zero Example

6-138

IA-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 pavg
Operation: if (PR gp]) {
check_target_register(ry);
if (one_byte_form { /1 one_byte form
X[0] = GRro]{7:0}; y[0] = GRr3{7:0};
x[1] = GRr] {15: 8}; y[1] = GRr3 {15: 8};
x[2] = GRry{23:16}; y[2] = GRr3{23:16};
x[3] = GRry]{31: 24}; y[3] = &R rg {31:24};
x[4] = G r] {39:32}; y[4] = &R rg {39: 32};
x[5] = GRIr]{47:40}; y[5] = GRr3]{47:40};
x[6] = GRIr;{55:48}; y[6] = GRr3{55: 48};
x[7] = GRro{63:56}; y[7] = GRr3{63:56};
if (raz_fornm {
for (i =0; i <8 i++) {
tenp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1;
res[i] = shift_right_unsigned(temp[i], 1);
} else { /1 normal form
for (i =0, i <8 i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});
}
GR[r ;] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0]);
} else { /1 two_byte form
x[0] = GRrj{15:0}; y[0] = GRrz{15:0};
x[1] = GRr;{31:16}; y[1] = GRr3{3L: 16};
x[2] = GRr {47:32}; y[2] = GRr3{47:32};
x[3] = GRr {63:48}; y[3] = GRr3 {63:48};
if (raz_form {
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
res[i] = shift_right_unsigned(temp[i], 1);
} else { /1 normal form
for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = shift_right_unsigned(tenp[i], 1) | (tenp[i]{0});
}
GRr ;] = concatenate4(res[3], res[2], res[1], res[0]);
}
GRrqjl.nat = GRry.nat || GRrg.nat;
HP/Intel 1A-64 Instruction Reference 6-139

pavgsub

IA-64 Application ISA Guide 1.0

Parallel Average Subtract

Format:

Description:

(ap) pavgsubl ry=ry I3 one_byte form A9
(ap) pavgsub2 ry=ry, I3 two_byte form A9

The unsigned data elements of GR r are subtracted from the unsigned data elements of GR r,. Theresults
of the subtraction are then each independently shifted to the right by one bit position. The high-order bits
of each element are filled with the borrow bits of the subtraction (the complements of the ALU carries).
To prevent cumulative round-off errors, an averaging is performed. The low-order bit of each result is set
to 1if at least one of the two least significant bits of the corresponding difference is 1. The signed results
areplaced in GR ry.

GRr3:
GR o
shift right 1 bit
16-bit W th average in
di fference | ow-order bit
pl us

bor r ow

shift right

1 bit

GR re

pavgsub2

Figure 6-30. Parallel Average Subtract Example

6-140 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 pavgsub

Operation: if (PR gp]) {

check_target_register(ry);

if (one_byte_form { /1 one_byte form
X[0] = GRro]{7:0}; y[0] = GRr3{7:0};
X[1] = Gr]{15:8}; y[1] = Rr3{15:8};
x[2] = GRrj{23:16}; y[2] = GRr3]{23: 16};
X[3] = GRry{31:24}; y[3] = Gr3{31:24};
x[4] = GRr] {39:32}; y[4] = Gr3{39:32};
x[5] = GRIr]{47:40}; y[5] = GRr3]{47:40};
X[6] = GR{r] {55:48}; y[6] = GRr3{55:48};
x[7] = GRr {63:56}; y[7] = GRr3{63:56};

for (i =0; i <8 i++) {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
res[i] = (tenp[i]{8:0} u>> 1) | (tenp[i]{0});

GR r ;] = concatenate8(res[7], res[6], res[5], res[4],
res[(3], res[2], res[1], res[0]);

} else { /!l two_byte form
x[0] = GRrj{15:0}; y[0] = GRrz{15:0};
x[1] = GRr {31:16}; y[1] = GRr3 {31 16};
x[2] = GRrp{47:32}; y[2] = GRr3l{47:32};
X[3] = G{r]{63:48}; y[3] = GRr3{63:48};

for (i =0; i <4; i++) {
tenp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
res[i] = (tenp[i]{16:0} u>> 1) | (tenp[i]{0});
GR[r ;] = concatenate4(res[3], res[2], res[1], res[0]);

}
GRrgjl.nat = GRry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-141

pcmp IA-64 Application ISA Guide 1.0

Parallel Compare

Format: (ap) pcmpl.prel r{=r,, 3 one_byte form A9
(ap) pcmp2.prel r1=rp, I3 two_byte form A9
(ap) pcmpd.prel r1=rp, I3 four_byte form A9

Description: The two source operands are compared for one of the two relations shown in Table 6-38. If the compari-
son condition istrue for corresponding data elements of GR r, and GR r3, then the corresponding data ele-
ment in GRr4 isset to al ones. If the comparison condition isfalse, the corresponding dataelement in GR
rq is set to all zeros. For the >’ relation, both operands are interpreted as signed.

Table 6-38. Pcmp Relations

prel Compare Relation (r, prel rg)

eq Ir==r3
gt ro >ry (signed)

GRr: |ff |00 |ff |ff|00|00|00|ff| GRmRr: |oxffff|0x0000|0xffff Oxffff

pcnpl. ge pcnp2. eq

GRr: |Oxffffffff 0x00000000

pcnp4. eq

Figure 6-31. Parallel Compare Example

6-142 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 pcmp
Operation: if (PR gp]) {
check_target_register(ry);
if (one_byte form { /] one-byte el ements
X[0] = GRro]{7:0}; y[0] = GRr3{7:0};
x[1] = GRro{15:8}; y[1] = GRr3{15:8};
x[2] = CGRr]{23:16}; y[2] = &R rg {23: 16};
X[3] = GRry{31:24}; y[3] = Gr3{31:24};
x[4] = GRr;{39:32}; y[4] = GRr3{39:32};
X[5] = CGRr]{47:40}; y[5] = GR{rg {47:40};
x[6] = GRIr;{55:48}; y[6] = GRr3{55: 48};
x[7] _:GR[rZ]_{63:56}_; y[7] = GR{ r3 {63: 56};
for (i =0; i <8; i++) {
if (prel =='eq)
tmp_rel = x[i] == y[i];
else
tmp_rel = greater_signed(sign_ext(x[i], 8), sign_ext(y][i], 8));
if (tmp_rel)
res[i] = Oxff;
else
res[i] = 0x00;
GR(r 4] = concatenate8(res[7], res[6], res[5], res[4],
res[3], res[2], res[1], res[0));
} else if (two_byte form) { I two-byte elements
x[0]=GR[r}{15:0} y[0] = GR][r 31{15:0}
X[1]=GR[r}{31:16}; y[1] = GR[r 5]{31:16};
X[2] = GR[r {47:32}; y[2] = GR][r 3{47:32};
X[3]=GR[r|{63:48}; y[3] = GR][r 31{63:48};
for (i=0;i<4;i++){
if(prel =='eq)
tmp_rel = x[i] == y[i];
else
tmp_rel = greater_signed(sign_ext(x[i], 16), sign_ext(y]i], 16));
if (tmp_rel)
res[i] = Oxffff;
else
resfi] = 0x0000;
GR{r 4] = concatenate4(res[3], res[2], res[1], res[0]);
}else { /I four-byte elements
x[0]=GR[r}{31:0} y[0] = GR][r 3]{31:0};
X[1]=GR[r{63:32}; y[1] = GR][r 31{63:32};
for (i=0;i<2;i++){
if(prel =='eq)
tmp_rel = x[i] == y[i];
else
tmp_rel = greater_signed(sign_ext(x[i], 32), sign_ext(y]i], 32));
if (tmp_rel)
res[i] = Oxffffffff;
else
res[i] = 0x00000000;
GR(r ;] = concatenate2(res[1], res[0]);
}
GR[r lnat=GR[rj.nat| GR[r zl.nat;
HP/Intel 1A-64 Instruction Reference 6-143

pmax IA-64 Application ISA Guide 1.0

Parallel Maximum

Format: (gp) pmaxl.u rqy=ry r3 one_byte form 12
(ap) pmax2 ry=ry,r3 two_byte form 12

Description: The maximum of the two source operands is placed in the result register. In the one_byte form, each
unsigned 8-bit element of GR r, is compared with the corresponding unsigned 8-bit element of GR r3 and
the greater of the two is placed in the corresponding 8-bit element of GR r4. In the two_byte form, each
signed 16-hit element of GR r, is compared with the corresponding signed 16-bit element of GR r3 and
the greater of the two is placed in the corresponding 16-bit element of GR r.

GRr3: GRr3:

GRry: GRry:

pmaxl.u prmax2

Figure 6-32. Parallel Maximum Example

Operation: if (PRgp]) {

check_target_register(ry);

if (one_byte form { /1 one-byte el enents
X[0] = GRr] {7:0}; y[0] = GRIrg{7:0};
x[1] = GRro{15:8}; y[1] = QR rz{15: 8};
x[2] = GRrj]{23:16}; y[2] = GRrg{23:16};
x[3] = GRirj{31:24}; y[3] = GRrj{31:24};
x[4] = GRrp{39:32}; y[4] = GRrg{39:32};
x[5] = GRrj]{47:40}; y[5] = GR[rg{47:40};
x[6] = GRrj]{55:48}; y[6] = GRrj{55: 48};
x[7] = Gry]{63:56}; y[7] = GRrg{63:56};

for (i =0; i <8 i++) {
res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? y[i] : x[i];

GR r;] = concatenate8(res[7], res[6], res[5], res[4],
res[(3], res[2], res[1], res[0]);
} else { /] two-byte el ements

x[0] = GRrj{15:0}; y[0] = GRrz{15:0};

x[1] = GRr;]{31:16}; y[1] = GRr3{31:16};

x[2] = GRro]{47:32}; y[2] = GRrg{47:32};

x[3] = GR[rz]_{63:48}_; y[3] = GR{r3 {63:48};

for (i =0; i <4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? y[i] : x[i];

GR[r ;] = concatenate4(res[3], res[2], res[1], res[0]);

}
GRrqj.nat = GR[ry.nat || GRrg.nat;

6-144 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 pmin

Parallel Minimum

Format: (gp) pminl.u ry=ry,r3 one_byte form 12
(ap) pmin2 ry=ry, 13 two_byte form 12

Description: The minimum of the two source operands is placed in the result register. In the one _byte form, each
unsigned 8-bit element of GR r, is compared with the corresponding unsigned 8-bit element of GR r3 and
the smaller of the two is placed in the corresponding 8-bit element of GR r;. In the two_byte form, each
signed 16-hit element of GR r, is compared with the corresponding signed 16-bit element of GR r3 and
the smaller of the two is placed in the corresponding 16-bit element of GR r.

GRr3: GRr3:

GRry: GRry:

pmnl.u

Figure 6-33. Parallel Minimum Example

Operation: if (PRI gp]) {

check_target_register(ry);

if (one_byte form { /] one-byte el ements
X[0] = GR{r,]{7:0}; y[0] = GRr3{7:0};
X[1] = Gr,]{15:8}; y[1] = Rrj{15:8};
x[2] = GRr;]{23:16}; y[2] = GRrj{23:16};
X[3] = GRry{31:24}; y[3] = Gr3{31:24};
x[4] = GRry{39:32}; y[4] = GRr3{39:32};
x[5] = GRIr;]{47:40}; y[5] = GRr3{47:40};
x[6] = GR{r] {55:48}; y[6] = GRr3{55:48};
X[7] = Gr {63:56}; y[7] = Gr3]{63:56};

for (i =0;1 <8 i+ {
res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? x[i] : y[il];

GR[r ;] = concatenate8(res[7], res[6], res[5], res[4],
res[(3], res[2], res[1], res[0]);
} else { /1 two-byte elenents
x[0] = GRrj{15:0}; y[0] = GRrz{15:0};
x[1] = GRr;]{31:16}; y[1] = GRr3{31:16};
x[2] = GRry{47:32}; y[2] = GRr3{47:32};
x[3] = GR[rz]_{63:48}_; y[3] = GR[r3 {63:48};
for (i =0; i <4; i++) {
res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? x[i] : y[i];
}

R r;] = concatenate4(res[3], res[2], res[1], res[0]);

}
CGRrgjl.nat = GR[ry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-145

pmpy IA-64 Application ISA Guide 1.0

Parallel Multiply

Format: (ap) pmpy2.r ry=ro, 3 right form 12
(ap) pmpy2.l ry=ry 13 left_form 12

Description: Two signed 16-bit data elements of GR r, are multiplied by the corresponding two signed 16-bit data ele-
ments of GR r3 as shown in Figure 6-34. The two 32-bit results are placed in GR r.

GR ra GR ra
GR ro! GR ro:
GRry: GRry:
prpy2. | prpy2. r
Figure 6-34. Parallel Multiply Operation
Operation: if (PRIgp]) {

check_target_register(ry);

if (right_form ({
CRr 1{31:0} = sign_ext(CGRr] {15:0}, 16) * sign_ext(CR r3{15:0}, 16);
CRrq{63:32} = sign_ext(GRry]{47:32}, 16) * sign_ext(GRrg{47:32}, 16);
} else { /1 left_form
CRr 1{31:0} = sign_ext(CGRr] {31:16}, 16) * sign_ext(GR rz {31:16}, 16);
CRrq{63:32} = sign_ext(GRry]{63:48}, 16) * sign_ext(GR[rg {63:48}, 16);

CGRrq.nat = R[ry.nat || GRrg.nat;

6-146 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 pmpyshr

Parallel Multiply and Shift Right

Format: (ap) pmpyshr2 rq =r5, ry, count, signed form 11
(gp) pmpyshr2.u rq =r,, ra, count, unsigned form 11

Description: The four 16-bit data elements of GR r, are multiplied by the corresponding four 16-bit data elements of
GR r3 as shown in Figure 6-35. This multiplication can either be signed (pmpyshr2), or unsigned
(pmpyshr2.u). Each product is then shifted to the right count, bits, and the least-significant 16-bits of each
shifted product form 4 16-bit results, which are placed in GR r;. A count, of O givesthe 16 low bits of the
results, a count, of 16 gives the 16 high bits of the results. The allowed values for count, are given in

Table 6-39.
Table 6-39. PMPYSHR Shift Options
count, Selected Bit Field from each 32-bit Product
0 15:.0
7 22:7
15 30:15
16 31:16
GRrj:
16- bi t
. source
GRry: el ement s
32-bit
products
shift right
count, bits .
] 16-bit
GRry: result
el ement s
prmpyshr 2
Figure 6-35. Parallel Multiply and Shift Right Operation
Operation: if (PRIgp]) {

check_target_register(ry);
x[0] = R r,]{15:0}; yLo] = GRrgl{15:0};
x[1] = Rrj]{31:16}; y[1] = Grg{31:16};
x[2] = Rr]{47:32}; y[2] = Grg{47:32};
x[3] = GRr;]{63:48}; y[3] = GRr3{63:48};
for (i =0; i <4; i++) {

i f (unsigned_form /1 unsigned nultiplication
tenp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);
el se /1 signed nmultiplication

temp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);

res[i] = tenp[i]{(count, + 15): count ;};

GR[r ;] = concatenate4(res[3], res[2], res[1], res[0])
CRrq.nat = Rry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-147

popcnt IA-64 Application ISA Guide 1.0

Population Count
Format: (gp) popent rq=r3

Description: The number of bitsin GR r5 having the value 1 is counted, and the resulting sum is placed in GR r5.

Operation: if (PRgp]) {
check_target _register(ry);

res = 0;

/1 Count up all the one bits

for (i =0; i <64; i++) {
res += GRrg{i};

}

R rq = res;
CRry].nat = GR[rg.nat;

6-148 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 psad
Parallel Sum of Absolute Difference
Format: (ap) psadl ry=ryp, 13 12

Description: The unsigned 8-bit elements of GR r,, are subtracted from the unsigned 8-hit elements of GR r3. The abso-

lute value of each difference is accumulated across the elements and placed in GR r.

Figure 6-36. Parallel Sum of Absolute Difference Example

psadl

Operation: if (PRgp]) {
check_target _register(rg);
x[0] = GRIr,{7:0}; y[0] = GRr3l{7:0};
x[1] = GRr,{15: 8}; y[1] = &Rr3{15:8};
x[2] = GR{r,{23:16}; y[2] = GRr3{23:16};
x[3] = GRry{31:24}; y[3] = GRr3{31:24};
x[4] = GRIr]{39:32}; y[4] = GRrg{39:32};
X[5] = GRIr] {47:40}; y[5] = GRrj {47:40};
x[6] = GRIry]{55:48}; y[6] = GRrg3]{55: 48};
x[7] = GRIr]{63:56}; y[7] = GRr3{63:56};
Rrq =0

for (i =0: i <8 i+ {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
if (temp[i] < 0)

tenp[i] =

-tenp[i];

R rq += tenp[il;

GRrqjl.nat = GR[ry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference

6-149

pshl

IA-64 Application ISA Guide 1.0

Parallel Shift Left

Format: (ap) pshl2 ry=ry, 13 two_byte form, variable form 17
(ap) pshl2 rq =ry,, counts two_byte form, fixed form 18
(ap) pshl4 ry=ry, 13 four_byte form, variable form 17
(ap) pshl4 rq=ry,, counts four_byte form, fixed form 18
Description: The data elements of GR r,, are each independently shifted to the left by the scalar shift count in GR r3, or
in the immediate field counts. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities)
yield al zero results. The results are placed in GRr.
GRry: GRry:
shift left
GRry: a a a a GRry: a a
pshl 2 pshl 4
Figure 6-37. Parallel Shift Left Example
Operation: if (PRI gp]) {
check_target_register(ry);
shift_count = (variable_form? CRrg : counts);
tnp_nat = (variable_form? GR[rg.nat : 0);
if (two_byte_form { /1 two_byte form
if (shift_count u> 16)
shift_count = 16;
CRr 1{15:0} = GRr{15:0} << shift_count;
R r {31:16} = GRr]{31:16} << shift_count;
CR r 1{47:32} = GRr {47:32} << shift_count;
CRr]{63:48} = GRr]{63:48} << shift_count;
} else { /1 four_byte_ form
if (shift_count u> 32)
shift_count = 32;
CRry{31:0} = GRrJ{31:0} << shift_count;
R r 1{63:32} = GRr;{63:32} << shift_count;
GRrgjl.nat = GRry.nat || tnp_nat;
}
6-150 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 pshladd

Parallel Shift Left and Add
Format: (gp) pshladd2 rq =r,, count,, ra A10

Description: The four signed 16-bit data elements of GR r, are each independently shifted to the left by count, bits
(shifting zeros into the low-order bits), and added to the four signed 16-hit data elements of GR r3. Both
the left shift and the add operations are saturating: if the result of either the shift or the add is not repre-
sentable as a signed 16-bit value, the final result is saturated. The four signed 16-bit results are placed in
GR r4. Thefirst operand can be shifted by 1, 2 or 3 bits.

Operation: if (PRgp]) {
check_target _register(ry);

x[0] = GRr] {15:0}; y[0] = GRr3]{15:0};
x[1] = GRrj{31:16}; y[1] = GRr{31:16};
x[2] = GRr,){47:32}; y[2] = GRr3 {47:32};
x[3] = GRIr;{63:48}; y[3] = GRirj{63:48};

sign_ext (Ox7fff, 16);
si gn_ext (0x8000, 16);

nmax =
mn =
for (i =0; i <4 i++) {

tenp[i] = sign_ext(x[i], 16) << count,;

if (tenp[i] > nax)
res[i] = nax;
else if (tenmp[i] < nmin)
res[i] = mn;
el se {
res[i] = tenp[i] + sign_ext(y[i], 16);
if (res[i] > max)
res[i] = max;
if (res[i] < mn)
res[i] = mn;

}

GR[r ;] = concatenate4(res[3], res[2], res[1], res[0]);
CRrgj]l.nat = GR[ry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-151

pshr

IA-64 Application ISA Guide 1.0

Parallel Shift Right

Format:

Description:

Operation:

(gp) pshr2 ry=rg, 1,

(ap) pshr2 rq =r3, counts
(gp) pshr2.u ry=rs,ry
(ap) pshr2.u rq =r3, counts
(gp) pshrd ry=rg, 1,

(9p) pshrd ry =r3, counts
(gp) pshr4.u ry=rs,ro
(gp) pshr4.u rq =r3, counts

signed form, two_byte form, variable form
signed form, two_byte form, fixed form
unsigned form, two_byte form, variable form
unsigned form, two_byte form, fixed form
signed form, four_byte form, variable form
signed form, four_byte form, fixed form
unsigned form, four_byte form, variable form
unsigned form, four_byte form, fixed form

15
16
15
16
15
16
15
16

The data elements of GR r5 are each independently shifted to the right by the scalar shift count in GR r»,
or in theimmediate field counts. The high-order bits of each element are filled with either the initial value
of the sign bits of the data elements in GR r5 (arithmetic shift) or zeros (logical shift). The shift count is
interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities)
yield all zero or @l one results depending on the initial values of the sign bits of the dataelementsin GRr3
and whether a signed or unsigned shift is done. The results are placed in GR r.

if (PREgp]) {

check_target_register(ry);

shift_count = (variable_form? GRr,] : counts);
tmp_nat = (variable_form? CGRrj].nat : 0);

if (two_byte fornm {

// two_byte form

if (shift_count u> 16)
shift_count = 16;

if (unsigned_ form {

R r,1{150}
R r 4] {31: 16}
R 1 4] {47: 32}
GR 1]{63: 48}

} else {

R r41{15: 0}
R r 4] {31: 16}
R 1 4] {47: 32}
GR 1]{63: 48}

} else {

/1 unsigned shift

shift_right_unsigned(zero_ext (GR rg {15: 0},
shift_count);

shift_right_unsigned(zero_ext (GR r3 {31: 16},
shift_count);

shift_right_unsigned(zero_ext (GR r3 {47: 32},
shift_count);

shift_right_unsigned(zero_ext (GR r3] {63:48},

shift_count);

/1 signed shift

16),
16),
16),

16),

shift_right_signed(sign_ext(GRrz {15:0}, 16),

shift_count);

shift_right_signed(sign_ext(Grz {31:16}, 16),

shift_count);

shift_right_signed(sign_ext(Gr3 {47:32}, 16),

shift_count);

shift_right_signed(sign_ext(GR rz {63:48}, 16),

shift_count);

/1 four_byte_form

if (shift_count > 32)
shift_count = 32;

if (unsigned_form {

R 1] {313 0}
GRI r ;] {63: 32}

} else {

GR{r 1] {31: 0}
GRI r ;] {63: 32}

}

/1 unsigned shift
shift_right_unsigned(zero_ext (GR r3 {31: 0},
shift_count);
shift_right_unsigned(zero_ext (GR r3 {63:32},
shift_count);
/1 signed shift

32),

32),

shift_right_signed(sign_ext(GRrz {31:0}, 32),

shift_count);

shift_right_signed(sign_ext(Gr3{63:32}, 32),

shift_count);

GRrqj.nat = GR[rg.nat || tnp_nat;

6-152 |A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 pshradd

Parallel Shift Right and Add
Format: (gp) pshradd2 rq =r5, county, r3 A10

Description: The four signed 16-bit data elements of GR r, are each independently shifted to the right by count, bits,
and added to the four signed 16-bit data elements of GR r3. The right shift operation fills the high-order
bits of each element with theinitial value of the sign bits of the data elementsin GR r,. The add operation
is performed with signed saturation. The four signed 16-bit results of the add are placed in GR r4. The first
operand can be shifted by 1, 2 or 3 hits.

Operation: if (PRgp]) {
check_target _register(ry);

x[0] = GRr] {15:0}; y[0] = GRr3]{15:0};
x[1] = GRrj{31:16}; y[1] = GRr{31:16};
x[2] = GRr,){47:32}; y[2] = GRr3 {47:32};
x[3] = GRIr;{63:48}; y[3] = GRirj{63:48};

nmax
mn

= sign_ext(Ox7fff, 16);

= si gn_ext (0x8000, 16);

for (i =0; i <4 i++) {

tenp[i] = shift_right_signed(sign_ext(x[i], 16), count);

res[i] = tenp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < mn)

res[i] = mn;

GR[r ;] = concatenate4(res[3], res[2], res[1], res[0]);
CRrgj]l.nat = GR[ry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-153

psub

IA-64 Application ISA Guide 1.0

Parallel Subtract

Format:

Description;

(gp) psubl ry=rpr3

(gp) psubl.sss ry=ry,r3
(gp) psubl.uus rqy=ry,r3
(gp) psubl.uuu rq=ry, 3
(ap) psub2 ry=rp 13

(gp) psub2.sss ry=ry,r3
(gp) psub2.uus rqy=ry,r3
(gp) psub2.uuu rqy=ry, 3

(ap) psub4 ry=ry, 13

one_byte form, modulo_form A9
one_byte form, sss_saturation form A9
one_byte form, uus_saturation _form A9
one_byte form, uuu_saturation_form A9
two_byte form, modulo_form A9
two_byte form, sss_saturation_form A9
two_byte form, uus_saturation_form A9
two_byte form, uuu_saturation form A9
four_byte form, modulo_form A9

Table 6-40. Parallel Subtract Saturation Completers

Resultr; Treated | Sourcer, Treated | SourcerzTreated
Completer
as as as
SsS signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned

Table 6-41. Parallel Subtract Saturation Limits

Result r, Signed Result ry Unsigned
! Element
Size - Upper L ower Upper L ower
Width e - _ I
Limit Limit Limit Limit
1 8 bit ox7f 0x80 Oxff 0x00
2 16 bit Ox7fff 0x8000 Ox(ffff 0x0000

The sets of elements from the two source operands are subtracted, and the results placed in GR r5.

If the difference between two elements cannot be represented in the result element and a saturation compl-
eter is specified, then saturation clipping is performed. The saturation can either be signed or unsigned, as
given in Table 6-40. If the difference of two elements is larger than the upper limit value, the result is the
upper limit value. If it is smaller than the lower limit value, the result is the lower limit value. The satura-
tion limitsare given in Table 6-41.

GRr3:

GR ro:

SUDL

psub2

Figure 6-38. Parallel Subtract Example

6-154 |A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 psub

Operation: if (PR gp]) {

check_target_register(ry);

if (one_byte form { /] one-byte el ements
X[0] = GRro]{7:0}; y[0] = GRr3{7:0};
X[1] = Gr]{15:8}; y[1] = &Rrj {15:8};
x[2] = GRr;]{23:16}; y[2] = GRr3{23:16}
X[3] = GRr{31:24}; y[3] = GRr3{31:24}
x[4] = QR]{39:32}; y[4] = GRr3{39:32}
X[5] = GRrp]{47:40}; y[5] = GRrg3]{47:40}
X[6] = GRr]{55:48}; y[6] = GRrg3]{55:48};
X[7] = Gr]{63:56}; y[7] = GRr3{63:56};

if (sss_saturation_form { // sss_saturation_form
max = sign_ext (0x7f, 8);
mn = sign_ext(0x80, 8);
for (i =0; i <8; i++) {
tenp[i] = sign_ext(x[i], 8)

sign_ext(y[i], 8);

} else if (uus_saturation_form { // uus_saturation_form
max = Oxff;
m n = 0x00;

for (i =0; i <8; i++) {
temp[i] = zero_ext(x[i], 8)

sign_ext(y[i], 8);

} else if (uuu_saturation_form { /!l uuu_saturation_form
max = Oxff;
m n = 0x00;

for (i =0; i <8 i++) {
tenp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);

} else { /1 nodul o_form
for (i =0; i <8 i++) {
tenp[i] zero_ext (x[i], 8) - zero_ext(y[i], 8);

}

if (sss_saturation_form|| uus_saturation_form]|| uuu_saturation_form {
for (i =0; i <8; i++) {
if (temp[i] > nmax)
tenp[i] = max;
if (tenp[i] < min)
tenp[i] = mn;

}

GRr ;] = concatenate8(tenp[7], tenp[6], tenp[5], tenp[4],
_ tenp[3], tenp[2], tenp[1], tenp[O]);
} else if (two_byte form { /1 two-byte el enents
x[0] = GRrj{15:0}; y[0] = GRrz{15:0};
x[1] = GRr;{31:16}; y[1] = GRr3{3L: 16};
x[2] = GRIr J{47:32}; y[2] = GRr3]{47:32};
x[3] = GRr {63:48}; y[3] = GRr3 {63:48};

if (sss_saturation_form { /1l sss_saturation_form
max = sign_ext(0x7fff, 16);
mn = sign_ext (0x8000, 16);
for (i =0; i <4; i++) {
temp[i] = sign_ext(x[i], 16) - sign_ext(y[i], 16);

} else if (uus_saturation_fornm { /1 uus_saturation_form
max = Oxffff;
m n = 0x0000;

for (i =0; i <4; i++) {
temp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);

} else if (uuu_saturation_fornm { /1 uuu_saturation_form
max = Oxffff;

HP/Intel |IA-64 Instruction Reference 6-155

psub IA-64 Application ISA Guide 1.0

m n = 0x0000;
for (i =0; i <4 i++) {
tenp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);

} else { /1 rmodul o_form
for (i =0; i <4 i+ {
temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);

}

if (sss_saturation_form|| uus_saturation_form|| uuu_saturation_form {
for (i =0; i <4; i++) {
if (temp[i] > nmax)
temp[i] = nmax;
if (temp[i] < mn)
temp[i] = nmin;

}
GR[r;] = concatenate4(tenp[3], tenp[2], tenp[1l], tenp[O]);
} else { Il four-byte elenents
x[0] = GRr] {31:0}; y[0] = GR{r5 {31:0};
x[1] = GRro{63:32}; y[1] = GRr3{63:32};
for (i =0; i <2; i++) { [/ nmodul o_form
tenp[i] = zero_ext(x[i], 32) - zero_ext(y[i], 32);
GRr ;] = concatenate2(tenp[1], tenp[O0]);

GRrqj.nat = GRry.nat || GRrg.nat;

6-156 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 rum

Reset User Mask
Format: (gp) rum immyy M44

Description: The complement of the imm,, operand is ANDed with the user mask (PSR{5:0}) and the result is placed
in the user mask.

PSR.up is only cleared if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not
modified.

Operation: if (PR gp]) {
if (is_reserved_fiel d(PSR._TYPE, PSR UM | mmpy,))
reserved_register field fault();

if (immpf1}) PSR(1} = O;

if (imp{2} & & PSR sp == 0) /I non-secure perf nonitor
PSR{2} = O;

if (imp{3}) PSR{3} = 0;

i (immpg4}) PSR(4} = 0;

if (imp5}) PSR{5} = O;

HP/Intel |IA-64 Instruction Reference 6-157

setf IA-64 Application ISA Guide 1.0

Set Floating-Point Value, Exponent, or Significand

Format: (gp) setf.s fi=r, single foom M18
(gp) setf.d fi=r5, double form M18
(ap) setf.exp fi=r5 exponent_form M18
(gp) setf.sig fi=r, significand form M18

Description: In the single and double forms, GR r, istreated as a single precision (in the single_form) or double preci-
sion (in the double form) memory representation, converted into floating-point register format, and
placedin FR f;.

In the exponent_form, bits 16:0 of GR r, are copied to the exponent field of FR f; and bit 17 of GRr, is
copied to the sign bit of FR f;. The significand field of FR f; is set to one (0x800...000).

63 1817 0
GR ry
FRf, |[s|exponent| 1000 s 000

Figure 6-39. Function of setf.exp

In the significand_form, the valuein GRr, is copied to the significand field of FR f;.

The exponent field of FR f, is set to the biased exponent for 2.0 (0x1003E) and the sign field of FR fiis
set to positive (0).

63 0

GRrq

v

FRf, |0| Ox1003E significand

Figure 6-40. Function of setf.sig

For al forms, if the NaT bit corresponding to r, isequal to 1, FR f; is set to NaTVal instead of the com-
puted result.

6-158 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 setf

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_isrcode, 0);

if ('CRry.nat) {
if (single_form
FRIf4] = fp_memto_fr_format(Gr,], 4, 0);
else if (double form
FRIf;] = fp_memto_fr_format(CGr,], 8, 0);
else if (significand forn {
FRIf;].significand = GR rj];
FR f ;] . exponent = FP_| NTEGER EXP;
FR{f4].sign = 0;
/1 exponent _form
FR f1].significand = 0x8000000000000000;
FRf1].exp = GR[r2]{16:0};
FRIf1].sign = GR[r2]{17};

} else
FR ;] = NATVAL;

fp_update_psr(f,);

HP/Intel |IA-64 Instruction Reference 6-159

shl IA-64 Application ISA Guide 1.0
Shift Left

Format: (gp) shl ri=ry, 13 17
(gp) shl rq=r,, countg pseudo-op of: (qp) dep.z rq = r,, countg, 64-countg

Description: The value in GR,, is shifted to the left, with the vacated bit positions filled with zeroes, and placed in GR
r.. The number of bit positions to shift is specified by the value inGR by an immediate valumunt,.

The shift count is interpreted as an unsigned number. If the value iy GRyreater than 63, then the
result is all zeroes.

For the immediate form, See “Deposit” on page 6-27.

Operation: if (PRgp]) {
check_target _register(ry);

count = GRr3;
GRry;] = (count > 63) ? 0: GRr, << count;

GRrgjl.nat = GRry.nat || GRrg.nat;

6-160 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 shladd

Shift Left and Add
Format: (gp) shladd rq =r,, count,, r3 A2

Description: The first source operand is shifted to the left by count, bits and then added to the second source operand
and the result placed in GR r4. Thefirst operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PRgp]) {
check_target _register(ry);

Rrg = (&Rry << county) + Grgl;
CRrgjl.nat = GR[ry.nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-161

shladdp4 IA-64 Application ISA Guide 1.0

Shift Left and Add Pointer

Format: (gp) shladdp4 rq =r,, county, r3 A2

Description: The first source operand is shifted to the left by count, bits and then is added to the second source oper-
and. The upper 32 bits of the result are forced to zero, and then bits { 31:30} of GR r3 are copied to hits
{62:61} of the result. Thisresult is placed in GRr4. The first operand can be shifted by 1, 2, 3, or 4 bits.

ore o] 0 |
Figure 6-41. Shift Left and Add Pointer
Operation: if (PR gp]) {

check_target_register(ry);

tnmp_res = (GR[ry << count,) + R(rgl;
tnp_res = zero_ext(tnp_res{31:0}, 32);
trp_res{62: 61} = G rz] {31:30};

R rgj =tnp_res;

CGRrgjl.nat = GR[ry.nat || GRrg.nat;

6-162 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 shr

Shift Right

Format: (gp) shr ry=rgro signed form I5
(gp) shr.u ry=rz,rp unsigned_form 15
(gp) shr rq =r3, countg pseudo-op of: (gp) extr rq = ra, countg, 64-countg
(gp) shr.urq =r3, countg pseudo-op of: dp) extr.u rq =rj3, countg, 64-countg

Description:

Operation:

The value in GR5 is shifted to the right and placed in &R In the signed_form the vacated bit positions
are filled with bit 63 of GR5; in the unsigned_form the vacated bit positions are filled with zeroes. The

number of bit positions to shift is specified by the value inrgBr by an immediate valusuntg. The

shift count is interpreted as an unsigned number. If the value in, GRyreater than 63, then the result is
all zeroes (for the unsigned_form, or if bit 63 of GRvas 0) or all ones (for the signed_form if bit 63 of

GRrzwas 1).
If the .u completer is specified, the shift is unsigned (logical), otherwise it is signed (arithmetic).

For the immediate forms, See “Extract” on page 6-28.

if (PREgp]) {

check_target_register(ry);

if (signed_ forn {
count = (GR[ry > 63) ? 63 : GRrj;
R rg] = shift_right_signed(GR rjz, count);
} else {
count = GRrj;
GRrgj] = (count > 63) ? 0 : shift_right_unsigned(GRrg, count);

GRrqjl.nat = GRry.nat || GRrg.nat;

HP/Intel

IA-64 Instruction Reference 6-163

shrp IA-64 Application ISA Guide 1.0

Shift Right Pair
Format: (gp) shrp rq=r,, r3, countg 110

Description: The two source operands, GR r, and GR r3, are concatenated to form a 128-bit value and shifted to the
right countg bits. The least-significant 64 bits of theresult are placed in GR r;.

The immediate value countg can be any number in the range O to 63.

GR o GR ra

GRry:

Figure 6-42. Shift Right Pair

Operation: if (PRgp]) {
check_target_register(r;);

tenpl = shift_right_unsigned(GR r3, countg);
tenp2 = GRr, << (64 - countyg);

GRrgj] = zero_ext(tenpl, 64 - countg) | tenp2;
CGRrgjl.nat = GR[ry.nat || GRrg.nat;

6-164 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 srlz

Serialize
Format: (gp) srlz.i M24

Description: Instruction serialization (srl z. i) ensures:
« prior modifications to processor register resources that affect fetching of subsequent instruction
groups are observed,
« prior modifications to processor register resources that affect subsequent execution or data memory
accesses are observed,
 prior memory synchronizatiosync. i) operations have taken effect on the local processor instruc-
tion cache,
» subsequent instruction group fetches are re-initiatedsafter. i completes.
Thesrl z.i instruction must be in an instruction group after the instruction group containing the opera-
tion that is to be serialized. Operations dependent on the serialization must be in an instruction group after
the instruction group containing tkel z. i .

Operation: if (PRgp]) {
instruction_serialize();
}

HP/Intel |IA-64 Instruction Reference 6-165

st IA-64 Application ISA Guide 1.0

Store

Format: (gp) stsz.sttype.sthint [rg] =15 normal_form, no_base update form M4
(gp) stsz.sttype.sthint [ra] =y, immy normal_form, imm_base update form M5
(gp) st8.spill.sthint [ra] =1, spill_form, no_base update form M4
(gp) st8.spill.sthint [rg] =r,, immg spill_form, imm_base update form M5

Description: A vaue consisting of the least significant sz bytes of the value in GR r, is written to memory starting at
the address specified by the value in GR r3. The values of the sz completer are given in Table 6-26 on
page 6-101. The sttype completer specifies specia store operations, which are described in Table 6-42. If
the NaT bit corresponding to GR r5 is 1 (or in the normal_form, if the NaT bit corresponding to GRr5 is
1), aRegister NaT Consumption fault is taken.

In the spill_form, an 8-byte valueis stored, and the NaT bit corresponding to GR r,, iscopied to abit in the
UNAT application register. This instruction is used for spilling a register/NaT pair. See “Control Specula-
tion” on page 4-10 for detalils.

In the imm_base_update form, the value in KGR added to a signed immediate valirenfy) and the
result is placed back in GR. This base register update is done after the store, and does not affect the
store address, nor the value stored (for the case wharelr; specify the same register).

Table 6-42. Store Types

sttype . . .
Completer I nterpretation Special Store Operation
none Normal store
rel Ordered store An ordered stor_e is performed with
release semantics.

For more details on ordered stores see “Memory Access Ordering” on page 4-18 .

The ALAT is queried using the physical memory address and the access size, and all overlapping entries
are invalidated.

The value of thesthint completer specifies the locality of the memory access. The values shithte
completer are given in Table 6-43. See “Memory Hierarchy Control and Consistency” on page 4-16.

Table 6-43. Store Hints

sthint Completer Interpretation
none Temporal locality, level 1
nta Non-temporal locality, all levels

6-166 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 st
Operation: if (PR gp]) {
size = spill _form? 8 : sz
otype = (sttype=="rel) ? RELEASE : UNORDERED;
if (imm_base_update_form)
check_target_register(r3);
if (GR[rg].nat|| (normal_form && GR[r 5].nat))
register_nat_consumption_fault((WRITE);
paddr = tlb_translate(GR[r 3], size, WRITE, PSR.cpl, &mattr,
&tmp_unused);
if (spill_form && GR[r 7].nat)
natd_gr_write(GR][r 5], paddr, size, UM.be, mattr, otype, st hi nt);
else
mem_write(GR[r], paddr, size, UM.be, mattr, otype, st hi nt);
if (spill_form) {
bit_pos=GR[r3|{8:3};
AR[UNAT{bit_pos} = GR][r gl.nat;
alat_inval_multiple_entries(paddr, size);
if imm_base_update_form) {
GR[r g =GR[r 3]+ sign_ext(i my, 9);
GR[r gl.nat = 0;
HP/Intel 1A-64 Instruction Reference 6-167

stf IA-64 Application ISA Guide 1.0

Floating-Point Store

Format: (gp) stffszsthint [rg] =f5 normal_form, no_base update form M9
(gp) stffsz.sthint [rg] = f5, immg normal_form, imm_base update form M10
(gp) stf8.sthint [ra] =1, integer_form, no_base update form M9
(gp) stf8.sthint [ra] = f,, immy integer_form, imm_base update form M10
(gp) stf.spill.sthint [rg] =f, spill_form, no_base update form M9
(gp) stf.spill.sthint [r3] = fy, immg spill_form, imm_base update form M10

Description: A value, consisting of fsz bytes, is generated from the value in FR f, and written to memory starting at the
address specified by the valuein GR r3. In the normal_form, thevaluein FR f, is converted to the memory
format and then stored. In theinteger_form, the significand of FR f, is stored. The values of the fsz compl-
eter are given in Table 6-29 on page 6-105. In the normal_form or the integer_form, if the NaT bit corre-
sponding to GR rzis 1 or if FR f, contains NaTVal, a Register NaT Consumption fault is taken. See “Data
Types and Formats” on page 5-1 for details on conversion from floating-point register format.

In the spill_form, a 16-byte value from HRis stored without conversion. This instruction is used for
spilling a register. See “Control Speculation” on page 4-10 for details.

In the imm_base_update form, the value in KGR added to a signed immediate valirenfy) and the
result is placed back in GR. This base register update is done after the store, and does not affect the
store address.

The ALAT is queried using the physical memory address and the access size, and all overlapping entries
are invalidated.

The value of thesthint completer specifies the locality of the memory access. The values shithte
completer are given in Table 6-43 on page 6-166. See “Memory Hierarchy Control and Consistency” on
page 4-16.

Operation: if (PR gp]) {
if (immbase_update form
check_target_register(ry);
if (tnp_isrcode = fp_reg_disabled(f, 0, 0, 0))
di sabl ed_fp_register_fault(tnp_i srcode, WR TE);

if (Rrg.nat || (!spill_form&& (FR f; == NATVAL)))
regi ster_nat_consunpti on_faul t (WRI TE) ;

size = spill _form? 16 : (integer form? 8 : fsz);

paddr = tlb_translate(GRr3, size, WRITE, PSR cpl, &mattr, & np_unused);
val = fp_fr_to_memformat (FR[f;], size, integer_form;

memwite(val, paddr, size, UMbe, mattr, UNORDERED, sthint);

alat _inval _multiple_entries(paddr, size);

if (immbase update form {

GRrg = GRrg + sign_ext(imm, 9);
GRrg.nat = 0;

6-168 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 sub

Subtract

Format: (gp) sub ry=ryr3 register_form Al
(ap) sub ry=ry,r3 1 minusl_form, register_form Al
(ap) sub ry =immg, r3 imms8_form A3

Description: The second source operand (and an optional constant 1) are subtracted from the first operand and the
result placed in GR r4. In the register form the first operand is GR r,; in theimmediate form the first oper-
and is taken from the sign extended immg encoding field.

Theminusl_formisavailable only inthe register_form (although the equivalent effect can be achieved by
adjusting the immediate).

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRry] : sign_ext(inm, 8));
tmp_nat = (register_form? CGRry].nat : 0);

if (mnusl form
GRrg] =tnmp_src - GRrg - 1

GRrg =tnmp_src - GRr4;

GRrgjl.nat = tnp_nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-169

sum IA-64 Application ISA Guide 1.0

Set User Mask
Format: (gp) sum immy, M44

Description: Theimm,, operand is ORed with the user mask (PSR{5:0}) and the result is placed in the user mask.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not
modified.

Operation: if (PR gp]) {
if (is_reserved_fiel d(PSR_TYPE, PSR UM | mmpy,))
reserved_register field fault();

if (imm{1}) PSR(1} = I

if (imp{2} & & PSR sp == 0) /I non-secure perf nonitor
PSR(2} = 1;

if (imp{3}) PSR{3} = 1;

i (immpg4}) PSR{4} = 1;

if (imp5}) PSR{5} = 1;

6-170 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

sxt

129

Sign Extend
Format: (gp) sxtxsz ry=rjz
Description: Thevaluein GR r3 issign extended from the bit position specified by xsz and the result isplaced in GR 4.
The mnemonic values for xsz are given in Table 6-44.
Table 6-44. xsz Mnemonic Values
Xsz Mnemonic Bit Position

1 7

2 15

4 31
Operation: if (PRI gp]) {

check_target_register(ry);

CRry] = sign_ext(Grg,xsz * 8);
R rq].nat = GRrg .nat;

HP/Intel

IA-64 Instruction Reference

6-171

sync

IA-64 Application ISA Guide 1.0

Memory Synchronization

Format:

Description:

Operation:

(gp) sync.i M24

sync. i ensures that when previoudly initiated Flush Cache (f ¢) operations issued by the local processor
become visible to local data memory references, prior Flush Cache operations are also observed by the
local processor instruction fetch stream. sync. i also ensures that at the time previoudly initiated Flush
Cache (f c) operations are observed on a remote processor by data memory references they are also
observed by instruction memory references on the remote processor. sync. i isordered with respect to all
cache flush operations as observed by another processor. A sync. i and apreviousf c must bein separate
instruction groups. If semantically required, the programmer must explicitly insert ordered data references
(acquire, release or fence type) to appropriately constrain sync. i (and hence f ¢) visihility to the data
stream on other processors.

sync.i is used to maintain an ordering relationship between instruction and data caches on local and
remote processors. An instruction serialize operation be used to ensure synchronization initiated by
sync. i onthelocal processor has been observed by a given point in program execution.

An example of self-modifying code (local processor):

st [L1] = data //store into local instruction stream

fc L1 /1flush stale datumfrominstruction/data cache
s /lrequire instruction boundary between fc and sync.i
sync. i //ensure local and renote data/inst caches are synchroni zed
:s,rl Z.i /l ensure sync has been observed by the |ocal processor,
v // ensure subsequent instructions observe nodified nenory
L1: target /linstruction nodified
if (PR gp]) {

instructi on_synchroni ze();

}

6-172 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 thit
Test Bit
Format: (gp) thit.trel.ctype pq, po =3, POSs 116
Description: The bit specified by the posg immediate is selected from GR r3. The selected bit forms a single bit result
either complemented or not depending on the trel completer. This result iswritten to the two predicate reg-
ister destinations p; and p,. The way the result is written to the destinations is determined by the compare
type specified by ctype. See the Compare instruction and Table 6-10 on page 6-19.
Thetrel completer values .nz and .z indicate non-zero and zero sense of the test. For normal and unc types,
only the .z value is directly implemented in hardware; the .nz value is actually a pseudo-op. For it, the
assembler simply switches the predicate target specifiers and uses the implemented relation. For the paral-
lel types, both relations are implemented in hardware.
Table 6-45. Test Bit Relations for Normal and unc tbits
trel Test Relation Pseudo-op of
nz | selectedbit==1 |z p; - po
z selected bit ==
Table 6-46. Test Bit Relations for Parallel thits
trel Test Relation
nz selected bit ==1
z selected bit ==
If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.
HP/Intel 1A-64 Instruction Reference 6-173

tbit

IA-64 Application ISA Guide 1.0

Operation: if (PRgp]) {
if (p1 == p2)
illegal operation fault();

if (trel =='nz)
tmp_rel=GR[r3l{ posg}
else

tmp_rel = IGR][r3l{ posg};

switch (ctype) {
case ‘and”:
if (GR[rg].nat|| tmp_rel) {
PR[p;] =0;
PR[p,] = 0;

break;
case ‘or’:
if \IGR[rgl.nat && tmp_rel) {
PR[p;]=1;
) PR[p2] = 1;
break;
case ‘or.andcm’:
if IGR[rgl.nat && tmp_rel) {
PR[ps]=1;
PR[p2] = 0;

break;
case ‘unc’
default:
if (GR[rg].nat) {
PR[p4] =0;
PR[p2] = 0;
}else {
PR[p4] =tmp_rel;
PR[pJ] = tmp_rel;

break;
}
}else {
if (ctype==‘unc’){
if(pl== p2)
illegal_operation_fault();
PR[p4] =0;
PR[p2] = 0;

/I 'nz’ - test for 1

/I 'z’ - test for O

/I and-type compare

/I or-type compare

// or.andcm-type compare

/I unc-type compare
// normal compare

6-174 |A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 tnat

Test NaT
Format: (gp) tnat.trel.ctype pq, pp=r3 117

Description: ~ The NaT bit from GR r3 forms asingle bit result, either complemented or not depending on the trel com-
pleter. Thisresult iswritten to the two predicate register destinations, p; and p,. The way theresult iswrit-
ten to the destinations is determined by the compare type specified by ctype. See the Compare instruction
and Table 6-10 on page 6-19.

Thetrel completer values .nz and .z indicate non-zero and zero sense of the test. For normal and unc types,
only the .z value is directly implemented in hardware; the .nz value is actually a pseudo-op. For it, the
assembler simply switches the predicate target specifiers and uses the implemented relation. For the paral-
lel types, both relations are implemented in hardware.

Table 6-47. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of
nz | selected bit == Z pLe P
z selected bit ==

Table 6-48. Test NaT Relations for Parallel tnats

trel Test Relation
nz selected hit ==
z selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare typeis
unc.

HP/Intel |IA-64 Instruction Reference 6-175

tnat

IA-64 Application ISA Guide 1.0

Operation: if (PRIgp]) {
if (p1 == p2)

illegal operation fault();

if (trel =='nz)
tmp_rel=GR[r3].nat;
else
tmp_rel = IGR][r gl.nat;

switch (ctype){
case ‘and’:
if ('tmp_rel) {
PR[p4] = 0;
PR[pz] = 0;

break;
case ‘or’:
if (tmp_rel) {
PR[ps]=1;
) PR[p2] = 1;
break;
case ‘or.andcm’:
if (tmp_rel) {
PR[ps]=1;
PR[p2] = 0;

break;

case ‘unc’

default:
PR[p;] =tmp_rel;
PR[pJ] = tmp_rel;

break;
}else{
if (ctype==‘unc){
if(pl== p2)
illegal_operation_fault();
PR[ps] =0;
PR[p2] =0;
}
}

/I 'nz’ - test for 1

/I 'z’ - test for O

/I and-type compare

/I or-type compare

// or.andcm-type compare

/I unc-type compare
// normal compare

6-176 I|A-64 Instruction Reference

HP/Intel

IA-64 Application ISA Guide 1.0 unpack

Unpack

Format: (gp) unpackl.h rqi=ry 3 one_byte form, high _form 12
(gp) unpack2.h rqy=ry 3 two_byte form, high form 12
(gp) unpack4.h rqi=ry 3 four_byte form, high form 12
(gp) unpackl.l rq=ro,r3 one_byte form, low_form 12
(gp) unpack2.l rq=r5,r3 two_byte form, low_form 12
(gp) unpack4.l rq=ro,r3 four_byte form, low_form 12

Description: The data elements of GR r, and r5 are unpacked, and the result placed in GR r4. In the high_form, the
most significant elements of each source register are selected, while in the low_form the least significant
elements of each source register are selected. Elements are selected alternately from the source registers.

HP/Intel |IA-64 Instruction Reference 6-177

unpack IA-64 Application ISA Guide 1.0

GR ol

unpackl.

GRry:

unpackl. |

GRry:

unpack?2.

GRry:

unpack?2. |

GRry: GRr3:

/
—

Figure 6-43. Unpack Operation

unpack4. h GRry:

GRry: GRr3:

unpack4. GRry:

6-178 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

unpack

Operation: if (PRIgp]) {
check_target _register(ry);

if (one_byte form {

x[0] = GRry]{7:0}; y[0] = GRrg{7:0};
x[1] = GRr]{15:8}); y[1] = GRrz{15:8};
x[2] = CGRr]{23:16}; y[2] = &R rg {23: 16};
x[3] = GRr] {31:24}; y[3] = G rg {31:24};
x[4] = GRr;]{39:32}; y[4] = GRr3{39:32};
X[5] = CGRr]{47:40}; y[5] = GR{rg {47:40};
x[6] = GRrj]{55:48}; y[6] = GRr3{55: 48};
x[7] = GRro{63:56}; y[7] = GRr3{63:56};
if (high_form

GR[r;] = concatenate8(x[7], y[7], x[6], y[6],
x[5], y[5]., x[4]. y[4]);

GRr ;] = concatenate8(x[3], y[3], x[2], y[2],
x[1], y[1], x[0], y[0Q]);

el se

} else if (two_byte forn {
X[0] = GRrp]{15:0}; y[0] = GRr3{15:0};
x[1] = GRr]{31:16}; y[1] = GRr3]{31:16};
X[2] = GRry{47:32}; y[2] = GRr3{47:32};
x[3] = GRr;{63:48}; y[3] = GRr3 {63:48};

if (high_form

GR[r ;] = concatenate4(x[3], y[3], x[2], y[2]);

el se

GR[r] = concatenate4(x[1], y[1], x[0], y[0]);

} else {
x[0] = GRr] {31:0}; y[0] = GR{r5 {31:0};
x[1] = GRr] {63: 32}; y[1] = GRrg {63:32};

if (high_form

GR[r ;] = concatenate2(x[1], y[1]);
el se

GR[r ;] = concatenate2(x[0], y[O]);

}
GRrgjl.nat = GRry.nat || GRrg.nat;

/1 one-byte el enents

/1 two-byte el enents

Il four-byte elenents

HP/Intel |IA-64 Instruction Reference

6-179

xchg IA-64 Application ISA Guide 1.0

Exchange
Format: (gp) xchgszldhint rq={r3],rs M16

Description: A value consisting of sz bytesis read from memory starting at the address specified by the value in GR r5.
The least significant sz bytes of the value in GR r,, are written to memory starting at the address specified
by the value in GR r3. The value read from memory is then zero extended and placed in GR r4 and the
NaT bit corresponding to GR r4 is cleared. The values of the sz completer are given in Table 6-49.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required.
Table 6-49. Memory Exchange Size

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

The exchange is performed with acquire semantics, i.e., the memory read/write is made visible prior to al
subsequent data memory accesses.

The memory read and write are guaranteed to be atomic.

The value of the Idhint completer specifies the locality of the memory access. The values of the Idhint
completer are given in Table 6-28 on page 6-102. Locality hints do not affect program functionality and

may be ignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-16
for details.

Operation: if (PRI gp]) {
check_target_register(r;, SEVAPHORE);

if (Rrg.nat || GRrj.nat)
regi ster_nat _consunpti on_f aul t (SEVAPHORE) ;

paddr = tlb_translate(GRr3, sz, SEMAPHCRE, PSR cpl, &mattr, & nmp_unused);

if (!ma_supports_senmaphores(mattr))
unsupported_data_r ef erence_faul t (SENMAPHORE, CRrg]);

val = memxchg(GR r,], paddr, sz, UMbe, nmattr, ACQURE, [dhint);
alat _inval _multiple_entries(paddr, sz);

CGRr;] = zero_ext(val, sz * 8);
&R rq].nat = 0;

6-180 I|A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Xxma

Fixed-Point Multiply Add

Format: (gp) xmal f;=fs,f, fp low _form F2
(gp) xmalu f; =f3, f, f, pseudo-op of: (gp) xmal fq="fs, 4, >
(gp) xmah f; =f3,f, f, high form F2
(gp) xmahu f; =13, f4 f, high_unsigned_form F2

Description: ~ Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers and multiplied.
The third source operand (FR f,) is zero extended and added to the product. The upper or lower 64 bits of
the resultant sum are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f5 and FR f, are treated as unsigned integers and
multiplied to produce a full 128-bit unsigned result. The significand field of FR f, is zero extended and
added to the product. The most significant 64-bits of the resultant sum are placed in the significand field
of FR fl'

In the high_form, the significand fields of FR f3 and FR f, are treated as signed integers and multiplied to
produce a full 128-bit signed result. The significand field of FR f, is zero extended and added to the prod-
uct. The most significant 64-bits of the resultant sum are placed in the significand field of FRf;.

In the other forms, the significand fields of FR f5 and FR f, are treated as signed integers and multiplied to
produce a full 128-bit signed result. The significand field of FR f, is zero extended and added to the prod-
uct. The least significant 64-bits of the resultant sum are placed in the significand field of FRf;.

Inall forms, the exponent field of FR f; is set to the biased exponent for 2.053 (0x1003E) and the sign field
of FR f; is set to positive (0). Note: f1 as an operand is not an integer 1; it is just the register file format’s
1.0 value.

In all forms, if any of FR5, FRf, , or FRf, is a NaTVal, FR; is set to NaTVal instead of the computed
result.

Operation: if (PR gp]) {
fp_check_target_register(f;);
if (tnp_isrcode = fp_reg_disabled(f;, fo f3 fy))
di sabled fp register_fault(tnp_isrcode, 0);

if (fp_is_natval (FRIf5]) || fp_is_natval (FR f3) || fp_is_natval (FR[f,)) {
FR{ f;] = NATVAL;
} else {
if (lowform]|| high_form
tnp_res_128 =
fp_164_x_164_to_| 128(FR[5 .significand, FR f,].significand);
el se // high_unsigned form
tnp_res_128 =
fp_U64_x_U64_to UL28(FR[5 .significand, FR f,].significand);

tnp_res_128 =
fp_UL28_add(tnp_res_128, fp_U64_to_UL28(FR[f] . significand));

if (high_form]|| high_unsigned_form
FRIf;].significand = tnp_res_128. hi;
else // lowform
FRIf;].significand = tnp_res_128.1 o;

FR f ;] . exponent = FP_| NTEGER EXP;
FR[f;].sign = FP_SI GN_PCSI Tl VE;
}

fp_update_psr(f,);

HP/Intel |IA-64 Instruction Reference 6-181

xmpy IA-64 Application ISA Guide 1.0

Fixed-Point Multiply

Format: (ap) xmpy.l fy="13,f4 pseudo-op of: (qp) xmal f; =f3, 4, fO
(ap) xmpy.lu fq =13, 14 pseudo-op of: (qp) xmal f; =f3, 4, fO
(ap) xmpy.h f; =13, 14 pseudo-op of: (qp) xma.h f; =13, f; fO
(ap) xmpy.hu f1 =fa, f4 pseudo-op of: (qp) xmahu f; =f3, fy, fO

Description: Two source operands (FR f; and FR f4) are treated as either signed or unsigned integers and multiplied.
The upper or lower 64 bits of the resultant product are selected and placed in FR f;.

In the high_unsigned_form, the significand fields of FR f5 and FR f, are treated as unsigned integers and
multiplied to produce a full 128-bit unsigned result. The most significant 64-hits of the resultant product
are placed in the significand field of FR f;.

In the high_form, the significand fields of FR f3 and FR f, are treated as signed integers and multiplied to
produce afull 128-bit signed result. The most significant 64-bits of the resultant product are placed in the
significand field of FR f;.

In the other forms, the significand fields of FR f5 and FR f, are treated as signed integers and multiplied to
produce a full 128-bit signed result. The least significant 64-bits of the resultant product are placed in the
significand field of FR f;.

Inall forms, the exponent field of FR f; is set to the biased exponent for 2.053 (0x1003E) and the sign field
of FR f; is set to positive (0). Note: f1 as an operand is not an integer 1, it is just the register file format’s
1.0 value.

Operation: See “Fixed-Point Multiply Add” on page 6-181.

6-182 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0 Xor

Exclusive Or

Format: (gp) xor rq=ro,r3 register_form Al
(gp) xor rq=immg, r imm8_form A3

Description: The two source operands are logically XORed and the result placed in GR r4. In theregister_form the first
operand isGR r; in theimm8_form the first operand is taken from the immg encoding field.

Operation: if (PRgp]) {
check_target _register(ry);

tmp_src = (register_form? GRry] : sign_ext(inmg 8));
tmp_nat = (register_form? CGRry].nat : 0);

GRrg =tnmp_src » GRr4;
GRrg]l.nat = tnp_nat || GRrg.nat;

HP/Intel |IA-64 Instruction Reference 6-183

zxt IA-64 Application ISA Guide 1.0

Zero Extend
Format: (gp) zxtxsz ry=r4 129

Description: Thevaluein GR r5 is zero extended above the bit position specified by xsz and the result is placed in GR
r1. The mnemonic values for xsz are given in Table 6-44 on page 6-171.

Operation: if (PRgp]) {
check_target _register(ry);

R rgj] = zero_ext(GR[rg,xsz * 8);
CGRrg].nat = GR[rg.nat;

6-184 |A-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

A

Instruction Sequencing Considerations

Instruction execution consists of four phases:

1. Read theinstruction from memory (fetch)

2. Read architectural state, if necessary (read)

3. Perform the specified operation (execute)

4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address and slot number and including all
instructions at sequentially increasing slot numbers and bundle addresses up to the first stop or taken branch. For the
instructions in an instruction group to have well-defined behavior, they must meet the ordering and dependency require-
ments described below.

If the instructions in instruction groups meet the resource-dependency requirements, then the behavior of a program will
be as though each individual instruction is sequenced through these phases in the order listed above. The order of a phase
of a given instruction relative to any phase of a previous instruction is prescribed by the instruction sequencing rules
below.

There is no a priori relationship between thieh of an instruction and theead, execute, or update of any dynami-
cally previous instruction. Theync.i andsrlz.i instructions can be used to enforce a sequential relationship
between théetch of all succeeding instructions and tmmlate of all previous instructions.

Between instruction groups, every instruction in a given instruction group will behave as though its read occurred
after the update of all the instructions from the previous instruction group. All instructions are assumed to have unit
latency. Instructions on opposing sides of a stop are architecturally considered to be separated by at least one unit of
latency.

Some system state updates require more stringent requirements than those described here.

Within an instruction group, every instruction will behave as though its read of the memory and ALAT state occurred
after the update of the memory and ALAT state of all prior instructions in that instruction group.

Within an instruction group, every instruction will behave as though its read of the register state occurred before the
update of the register state by any instruction (prior or later) in that instruction group, except as noted in the depen-
dency restrictions section below.

The ordering rules above form the context for register dependency restrictions, memory dependency restrictions and the
order of exception reporting. These dependency restrictions apply only between instructions whose resource reads and
writes are not dynamically disabled by predication.

Register dependencies: Within an instruction group, read-after-write (RAW) and write-after-write (WAW) register

dependencies are not allowed (except as noted in “RAW Ordering Exceptions” on page A-2 and “WAW Ordering
Exceptions” on page A-3). Write-after-read (WAR) register dependencies are allowed (except as noted in “WAR
Ordering Exceptions” on page A-3).

These dependency restrictions apply to both explicit register accesses (from the instruction’s operands) and implicit
register accesses (such as application and control registers implicitly accessed by certain instructions). Predicate
register PRO is excluded from these register dependency restrictions, since writes to PRO are ignored and reads
always return 1 (one).

Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory dependencies and ALAT
dependencies are allowed. A load will observe the results of the most recent store to the same memory address. In the
event that multiple stores to the same address are present in the same instruction group, memory will contain the
result of the latest store after execution of the instruction group. A store following a load to the same address will not

HP/Intel Instruction Sequencing Considerations A-1

IA-64 Application ISA Guide 1.0

affect the data loaded by the load. Advanced loads, check loads, advanced load checks, stores, and memory sema-
phore instructions implicitly access the ALAT. RAW, WAW, and WAR ALAT dependencies are alowed within an
instruction group and behave as described for memory dependencies.

The net effect of the dependency restrictions stated above isthat a processor may execute all (or any subset) of the instruc-
tions within a legal instruction group concurrently or serially with the end result being identical. If these dependency
restrictions are not met, the behavior of the program is undefined.

The instruction sequencing resulting from the rules stated above is termed sequential execution.

The ordering rules and the dependency restrictions allow the processor to dynamically re-order instructions, execute
instructions with non-unit latency, or even concurrently execute instructions on opposing sides of a stop or taken branch,
provided that correct sequencing is enforced and the appearance of sequential execution is presented to the programmer.

IPisaspecial resourcein that reads and writes of 1P behave as though the instruction stream was being executed serially,
rather than in parallel. RAW dependencies on IP are allowed, and the reader gets the IP of the bundle in which it is con-
tained. So, each bundle being executed in paradlel logicaly reads IP, increments it and writes it back. WAW is aso
allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW dependencies to ignored ARs are
not allowed.

A.l RAW Ordering Exceptions

There are four exceptions to the rule prohibiting RAW register dependencies within an instruction group. These excep-
tions are the al | oc instruction, check load instructions, instructions that affect branching, and the 1 d8.fill and
st 8. spi | | instructions,

e Theal | oc instruction implicitly writes the Current Frame Marker (CFM) which is implicitly read by all instructions
accessing the stacked subset of the general register file. Instructions that access the stacked subset of the general reg-
ister file may appear in the same instruction group as alloc and will see the stack frame specifiatlIlmcthdote
that some instructions have RAW or WAW dependences on resources other than CFM affelcted byd are thus
not allowed in the same instruction group afterafihoc: fl ushrs, move from AR[BSPSTORE], move from
AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, br.call, br.ia, br.ret, clrrrb. Note thatal | oc is
required to be the first instruction in an instruction group.

¢ A check load instruction may or may not perform a load since it is dependent upon its corresponding advanced load.
If the check load misses the ALAT it will execute a load from memory. A check load and a subsequent instruction that
reads the target of the check load may exist in the same instruction group. The dependent instruction will get the new
value loaded by the check load.

¢ A branch may read branch registers and may implicitly read predicate registers, the LC, EC, and PFS application reg-
isters, as well as CFM. Except for LC, EC and predicate registers, writes to any of these registers by a non-branch
instruction will be visible to a subsequent branch in the same instruction group. Writes to predicate registers by any
non-floating-point instruction will be visible to a subsequent branch in the same instruction group. RAW register
dependencies within the same instruction group are not allowed for LC and EC. Dynamic RAW dependencies where
the predicate writer is a floating-point instruction and the reader is a branch are also not allowed within the same
instruction group. Branches . cond, br. cal |, br.ret andbr. i a work like other instructions for the purposes of
register dependency; i.e., if their qualifying predicate is 0, they are not considered readers or writers of other
resources. Branches . cl oop, br.cexit, br.ctop, br.wexit, andbr.w op are exceptional in that they are
always readers or writers of their resources, regardless of the value of their qualifying predicate.

e Thelds.fill andst8. spill instructions implicitly access the User NaT Collection application register (UNAT).
For these instructions the restriction on dynamic RAW register dependencies with respect to UNAT applies at the bit
level. These instructions may appear in the same instruction group provided they do not access the same bit of UNAT.
RAW UNAT dependencies betweénl8. fill or st8.spill instructions and mov ar= or mov =ar instructions
accessing UNAT must not occur within the same instruction group.

For the purposes of resource dependencies, CFM is treated as a single resource.

A-2 Instruction Sequencing Considerations HP/Intel

IA-64 Application ISA Guide 1.0

A.2 WAW Ordering Exceptions

There are three exceptions to the rule prohibiting WAW register dependencies within an instruction group. The exceptions
are compare-type instructions, floating-point instructions, and the st 8. spi | | instruction.

e The set of compare-type instructions includas, cnp4, tbit, tnat, fcnp, frsqrta, frcpa, andf cl ass. Com-
pare-type instructions in the same instruction group may target the same predicate register provided:

« The compare-type instructions are either all AND-type compares or all OR-type compares (AND-type compares
correspond to “.and” and “.andcm” completers; OR-type compares correspond to “.or” and “.orcm” completers),
or

« The compare-type instructions all target PRO. All WAW dependencies for PRO are allowed; the compares can be
of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including dynamic WAW register dependencies
with move to PR instructions that access the same predicate registers as another writer. Note that the move to PR instruc-
tion only writes those PRs indicated by its mask, but the move from PR instruction always reads all the predicate registers.

 Floating-point instructions implicitly write the Floating-Point Status Register (FPSR) and the Processor Status Regis-
ter (PSR). Multiple floating-point instructions may appear in the same instruction group since the restriction on WAW
register dependencies with respect to the FPSR and PSR do not apply. The state of FPSR and PSR after executing the
instruction group will be the logical OR of all writes.

e Thest 8. spi | | instruction implicitly writes the UNAT register. For this instruction the restriction on WAW register
dependencies with respect to UNAT applies at the bit level. Multifdespi | | instructions may appear in the same
instruction group provided they do not write the same bit of UNAT. WAW register dependencies lxatgvesn | |
instructions androv ar = instructions targeting UNAT must not occur within the same instruction group.

WAW dependencies to ignored ARs are not allowed.

A.3 WAR Ordering Exceptions

WAR dependence between the reading of PR63 by a branch instruction and the subsequent writing of PR63 by a loop
closing branchifr. ctop, br. cexit, br. w op, orbr. wexit) in the same instruction group is not allowed. Otherwise,
WAR dependencies are allowed.

HP/Intel Instruction Sequencing Considerations A-3

IA-64 Application ISA Guide 1.0

A-4 Instruction Sequencing Considerations HP/Intel

IA-64 Application ISA Guide 1.0

IA-64 Pseudo-Code Functions

This appendix contains a table of pseudo-code functions used in Chapter 6, "I A-64 Instruction Reference’.

Table B-1. Pseudo-Code Functions

Function

Operation

xxx_fault(parameters ...)

There are several fault functions. Each fault function accepts parameters spe-
cific to thefault, e.g., exception code values, virtual addresses, etc. If the fault
is deferred for speculative load exceptions the fault function will return with a
deferral indication. Otherwise, fault routines do not return and terminate the
instruction sequence.

XXX_trap(parameters...)

There are severa trap functions. Each trap function accepts parameters spe-
cific to the trap, e.g., trap code values, virtual addresses, etc. Trap routines do
not return.

acceptance_fence()

Ensures prior data memory references to uncached ordered-sequential mem-
ory pages are “accepted”, before subsequent data memory references 4
formed by the processor.

alat_cmp(rtype, raddr)

Returns a one if the implementation finds an ALAT entry which matche
register type specified byt ype and the register address specified hgdr,
else returns zero. This function is implementation specific. Note that an i
mentation may optionally choose to return zero (indicating no match) eve
matching entry exists in the ALAT. This provides implementation flexibility
designing fast ALAT lookup circuits.

alat_frame_update(delta_bof,
delta_sof)

Notifies the ALAT of a change in the bottom of frame and/or size of fram
This allows management of the ALAT’s tag bits or other management fu
tions it might need.

alat_inval()

Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr,
size)

The ALAT is queried using the physical memory address specifigadijr
and the access size specifiedsbye. All matching ALAT entries are invali-
dated. No value is returned.

alat_inval_single_entry(rtype, rega)

The ALAT is queried using the register type specifiegdayand the regis-
ter address specified byga. At most one matching ALAT entry is invali-
dated. No value is returned.

alat_write(rtype, raddr, paddr, size)

Allocates a new ALAT entry using the register type specifigghbythe
register address specified fgddr, the physical memory address specified

paddr, and the access size specifiecsbye. No value is returned. This func

tion guarantees that only one ALAT entry exists for a giaadur. If a
I d.c.nc,ldf.c.nc, orl df p. c. nc instruction’sr addr matches an existing
ALAT entry’s register tag, but the instructiossze and/orpaddr are differ-

re per-
s the
mple-

nifa
n

nc-

ent than that of the existing entry’s; then this function may either preserve the

existing entry, or invalidate it and write a new entry with the instruction’s
specifiedsi ze andpaddr.

check_target_register(rl)

If r1 targets an out-of-frame stacked register (as defined by CFM), an
operation fault is delivered, and this function does not return.

check_target_register_sof(rl, new-
sof)

If r1 targets an out-of-frame stacked register (as defined by the newsof p
eter), an illegal operation fault is delivered, and this function does not ret

HP/Intel

IA-64 Pseudo-Code Functions

B-1

illegal

aram-
urn.

IA-64 Application ISA Guide 1.0

Table B-1. Pseudo-Code Functions (Continued)

Function

Operation

concatenate2(x1, x2)

Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit
result.

concatenated(x1, x2, X3, x4)

Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit
result.

concatenate8(x1, x2, x3, x4, x5, X6,
X7, x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

fadd(fp_dp, fr2)

Addsafloating-point register value to the infinitely precise product and return
the infinitely precise sum, ready for rounding.

fecmp_exception_fault_check(fr2, fr3,
frel, sf, *tmp_fp_env)

Checks for al floating-point faulting conditions for the fcmp instruction.

fevt_fx_exception_fault_check(fr2,
trunc, sf *tmp_fp_env)

Checksfor all floating-point faulting conditions for the fevt.fx and
fevt.fx.trunc instructions. It propagates NaNs, and NaTVals.

fevt fxu_exception_fault_check(fr2,
trunc, sf, *tmp_fp_env)

Checks for al floating-point faulting conditions for the fcvt.fxu and
fevt.fxu.trunc instructions. It propagates NaNs, and NaT Vals.

fma_exception_fault_check(fr2, fr3,
fr4, pc, sf, *tmp_fp_env)

Checks for al floating-point faulting conditions for the fma instruction. It
propagates NaNs, NaTVals, and special |EEE resuilts.

fminmax_exception_fault_check(fr2,
fr3, of, *tmp_fp_env)

Checksfor all floating-point faulting conditions for the f amax, f ani n, f max,
and f m n instructions.

fms_fnma_exception_fault_check(fr
2, fr3, fr4, pc, f, *tmp_fp_env)

Checksfor all floating-point faulting conditions for the f ms and f nna instruc-
tions. It propagates NaNs, NaT Vals, and special |EEE results.

fmul (fr3, fr4)

Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop()

Returns TRUE if the current instruction is followed by a stop; otherwise,
returns FALSE.

fp_check target_register(fl)

If the specified floating-point register identifier is 0 or 1, this function causes
an illegal operation fault.

fp_decode_fault(tmp_fp_env)

Returns floating-point exception fault code values for |SR.code.

fp_decode_traps(tmp_fp_env)

Returns floating-point trap code values for | SR.code.

fp_is nan_or_inf(freg)

Returns true if the floating-point exception_fault_check functions returned a
| EEE fault disabled default result or a propagated NaN.

fp_equal(frl, fr2)

|EEE standard equality relationship test.

fp_ieee recip(hum, den)

Returns the true quotient for special sets of operands, or an approximation to
the reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee recip_sgrt(root)

Returns the true square root result for special operands, or an approximation
to the reciprocal sguare root to be used in the software square root algorithm.

fp_is_nan(freg)

Returns true when floating register contains a NaN.

fp_is natval(freg)

Returns true when floating register contains a NaT Val

fp_is_normal(freg)

Returns true when floating register contains anormal number.

fp_is_pos_inf(freg)

Returns true when floating register contains a positive infinity.

fp_is_gnan(freg)

Returns true when floating register contains a quiet NaN.

fp_is_snan(freg)

Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg)

Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg)

Returns true when floating register contains an unsupported format.

fp_less than(frl, fr2)

| EEE standard less-than relationship test.

fp_lesser_or_equal(frl, fr2)

| EEE standard less-than or equal-to relationship test

fp_normalize(frl)

Normalizes an unnormalized fp value. This function flushes to zero any
unnormal values which can not be represented in the register file

fp_raise_fault(tmp_fp_env)

Checksthe local instruction state for any faulting conditions which require an
interruption to be raised.

B-2

IA-64 Pseudo-Code Functions

HP/Intel

IA-64 Application ISA Guide 1.0

Table B-1. Pseudo-Code Functions (Continued)

Function

Operation

fp_raise_traps(tmp_fp_env)

Checksthe local instruction state for any trapping conditions which require an
interruption to be raised.

fp_reg_bank_conflict(f1, f2)

Returns trueif the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, 13, 14)

Check for possible disabled floating-point register faults.

fp_reg_read(freg)

Reads the FR and gives canonical double-extended denormals (and pseudo-
denormals) their true mathematical exponent. Other classes of operands are
unaltered.

fp_unordered(frl, fr2)

|EEE standard unordered relationship

fp_fr_to_mem_format(freg, size)

Converts afloating-point value in register format to floating-point memory
format. It assumes that the floating-point value in the register has been previ-
ously rounded to the correct precision which corresponds with the si ze
parameter.

frcpa_exception_fault_check(fr2, fr3,
sf, *tmp_fp_env)

Checksfor all floating-point faulting conditions for the f r cpa instruction. It
propagates NaNs, NaT Vals, and special | EEE results.

frsgrta_exception_fault_check(fr3,
sf, *tmp_fp_env)

Checksfor all floating-point faulting conditions for the f r sqr t a instruction.
It propagates NaNs, NaT Vals, and special |EEE results

ignored_field_mask(regclass, reg,
value)

Boolean function that returns val ue with bits cleared to O corresponding to
ignored bits for the specified register and register type.

instruction_serialize()

Ensures all prior register updates with side-effects are observed before subse-
guent instruction and data memory references are performed. Also ensures
prior SYNC.i operations have been observed by the instruction cache.

instruction_synchronize

Synchronizes the instruction and data stream for Flush Cache operations. This
function ensures that when prior FC operations are observed by the local data
cache they are observed by the local instruction cache, and when prior FC
operations are observed by another processor’s data cache they are ob
within the same processor’s instruction cache.

served

is_finite(freg)

Returns true when floating register contains a finite number.

is_ignored_reg(regnum)

Boolean function that returns truegifiumis an ignored application registe
otherwise false.

is_inf(freQ)

Returns true when floating register contains an infinite number.

is_kernel_reg(ar_addr)

Returns a onerif addr is the address of a kernel register application reg
ter

is_reserved_field(regclass, arg2,
arg3)

Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum)

Returns true if regist@umis reserved in theegcl ass register file.

mem_flush(paddr)

The line addressed by the physical adsiéds is invalidated in all levels of
the memory hierarchy above memory and written back to memory if it is
inconsistent with memory.

mem_implicit_prefetch(vaddr, hint)

Moves the line addressedhlyr to the location of the memory hierarchy
specified byhi nt . This function is implementation dependent and can be
ignored.

mem_promote(paddr, mtype, hint)

Moves the line addressedday to the highest level of the memory hiera
chy conditioned by the access hints specifiedibyt . Implementation depen
dent and can be ignored.

mem_read(paddr, size, border, mat
otype, hint)

trReturns thei ze bytes starting at the physical memory location specified
paddr with byte order specified kiyor der, memory attributes specified by
mat t r, and access hint specified hiynt . ot ype specifies the memory orde
ing attribute of this access, and must be UNORDERED or ACQUIRE.

fp_mem_to_fr_format(mem, size)

Converts a floating-point value in memory format to floating-point regi
format.

HP/Intel

IA-64 Pseudo-Code Functions

B-3

jis-

ar-

[

ster

IA-64 Application ISA Guide 1.0

Table B-1. Pseudo-Code Functions (Continued)

Function

Operation

mem_write(value, paddr, size, bor-
der, mattr, otype, hint)

Writes the least significant si ze bytes of val ue into memory starting at the
physical memory address specified by paddr with byte order specified by
bor der, memory attributes specified by mat t r, and access hint specified by
hi nt . ot ype specifies the memory ordering attribute of this access, and must
be UNORDERED or RELEASE. No valueis returned.

mem_xchg(data, paddr, size,
byte order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hi nt . After
the read, the least significant si ze bytes of data are written to si ze bytesin
memory starting at the physical address specified by paddr. The read and
write are performed atomically. Both the read and the write are conditioned by
the memory attribute specified by mat t r and the byte ordering in memory is
specified by byt e_or der. ot ype specifies the memory ordering attribute of
this access, and must be ACQUIRE.

mem_xchg_add(add_val, paddr, size,
byte order, mattr, otype, hint)

Returnssi ze bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hi nt. The
least significant si ze bytes of the sum of the value read from memory and
add_val is then written to si ze bytes in memory starting at the physical
address specified by paddr. The read and write are performed atomically.
Both the read and the write are conditioned by the memory attribute specified
by mattr and the byte ordering in memory is specified by byte_order.
ot ype specifies the memory ordering attribute of this access, and has the
value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data,
paddr, size, byte order, mattr, otype,
hint)

Returnssi ze bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hi nt . If the
value read from memory is equal to cnp_val , then the least significant si ze
bytes of data are written to si ze byt es in memory starting at the physical
address specified by paddr. If the write is performed, the read and write are
performed atomically. Both the read and the write are conditioned by the
memory attribute specified by mat t r and the byte ordering in memory is spec-
ified by byt e_order. ot ype specifies the memory ordering attribute of this
access, and has the value ACQUIRE or RELEASE.

ordering_fence()

Ensures prior data memory references are made visible before future data
memory references are made visible by the processor.

pr_phys to_virt(phys id)

Returnsthe virtual register id of the predicate from the physical register id,
phys_i d of the predicate.

rotate_regs()

Decrements the Register Rename Base registers, effectively rotating the regis-
ter files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_|oad()

If the RSE load pointer (RSE.BSPL oad) is greater than AR[BSP], the

RSE. CFLE bit is set to indicate that mandatory RSE loads are allowed to
restore registersin the current frame (in no other case does the RSE spill or fill
registersin the current frame). This function does not perform mandatory RSE
loads. This procedure does not cause any interruptions.

rse_invalidate_non_current_regs()

All registers outside the current frame are invalidated.

rse_new_frame(current_frame_size,
new_frame_size)

A new frame is defined without changing any register renaming. The new
frame size is completely defined by the new frane_si ze parameter (succes-
sive calls are not cumulative). If new _frame_si ze islarger than

current _frane_si ze and the number of registersin theinvalid and clean
partitionsis less than the size of frame growth then mandatory RSE stores are
issued until enough registers are available. The resulting sequence of RSE
stores may be interrupted. Mandatory RSE stores may cause interruptions; see
rse_storefor alist.

B-4

IA-64 Pseudo-Code Functions

HP/Intel

IA-64 Application ISA Guide 1.0

Table B-1. Pseudo-Code Functions (Continued)

Function

Operation

rse preserve frame(preserved_frame
_Size)

The number of registers specified by pr eserved_f rane_si ze are marked to
be preserved by the RSE. Register renaming causes the

preserved_f rane_si ze registers after G 32] to be renamed to GR[32] .
AR BSP] is updated to contain the backing store address where the new

GR 32] will be stored.

rse_store(type)

Saves aregister or NaT collection to the backing store (store_address =
AR[BSPSTORE])). If store_address{ 8:3} isequal to 0x3f then the NaT collec-
tion AR[RNAT] is stored. If store_address{8:3} is not equal to Ox3f then the
register RSE.StoreReg is stored and the NaT bit from that register is deposited
in AR[RNAT]{ store_address{8:3}}. If the storeis successful AR[BSP-
STORE] isincremented by 8. If the store is successful and a register was
stored RSE.StoreReg isincremented by 1 (possibly wrapping in the stacked
registers). This store moves aregister from the dirty partition to the clean par-
tition. The privilege level of the store is obtained from AR[RSC].pl. The byte
order of the store is obtained from AR[RSC].be. For mandatory RSE stores,
typeis MANDATORY. RSE stores do not invalidate ALAT entries.

rse_update internal_stack pointers(n
ew_store_pointer)

Given anew vaue for ARl BSPSTCORE] (new_st or e_poi nt er) this function
computes the new value for ARl BSP] . Thisvalueisequal to

new_st or e_poi nt er plusthe number of dirty registers plus the number of
intervening NaT collections. This means that the size of the dirty partition is
the same before and after awrite to AR BSPSTCRE] . All clean registers are
moved to theinvalid partition.

sign_ext(value, pos)

Returns a 64 bit number with bits pos-1 through 0 taken from val ue and bit
pos-1 of val ue replicated in bit positions pos through 63. If pos is greater
than or equal to 64, val ue isreturned.

tlb_translate(vaddr, size, type, cpl,
*attr, *defer)

Returns the translated data physical address for the specified virtual memory
address (vaddr) when translation enabled; otherwise, returns vaddr . si ze
specifies the size of the access, t ype specifies the type of access (e.g., read,
write, advance, spec). cpl specifies the privilege level for access checking
purposes. *at t r returns the mapped physical memory attribute. If any fault
conditions are detected and deferred, tlb_translate returns with *def er set. If
afault is generated but the fault is not deferred, tlb_translate does not return.

tib_translate_nonaccess(vaddr, type)

Returns the translated data physical address for the specified virtual memory
address (vaddr). t ype specifies the type of access (e.g., FO). If afault isgen-
erated, tib_translate _nonaccess does not return.

unimplemented_physical_address(pa
ddr)

Return TRUE if the presented physical address is unimplemented on this pro-
cessor model; FALSE otherwise. This function is model-specific.

impl_undefined_natd_gr_read(paddr,
size, be, mattr, otype, [dhint)

defines register return data for a speculative load to a NaTed address. This
function may return data from another address space.

unimplemented_virtua _address(vad
dr)

Return TRUE if the presented virtual address is unimplemented on this pro-
cessor model; FAL SE otherwise. This function is model-specific.

fp_update fpsr(sf, tmp_fp_env)

Copies a floating-point instruction’s local state into the global FPSR.

zero_ext(value, pos)

Returns a 64 bit unsigned number withdsitd through 0 taken fromal ue
and zeroes in bit positiom®s through 63. lfpos is greater than or equal to
64,val ue is returned.

HP/Intel

IA-64 Pseudo-Code Functions

B-5

IA-64 Application ISA Guide 1.0

B-6 IA-64 Pseudo-Code Functions HP/Intel

IA-64 Application ISA Guide 1.0

C IA-64 Instruction Formats

Each | A-64 instruction is categorized into one of six types; each instruction type may be executed on one or more execu-
tion unit types. Table C-1 lists the instruction types and the execution unit type on which they are executed:

Table C-1. Relationship Between Instruction Type and Execution Unit Type

Instruction _ Execution Unit
Type Description Type
A Integer ALU [-unit or M-unit
I Non-ALU integer | [-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended [-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains
three 41-bit instruction slots and a 5-bit template field. The format of abundleis depicted in Figure C-1.
127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot O ‘ temﬁ;late
41 41 41 5

Figure C-1. Bundle Format

The template field specifies two properties: stops within the current bundle, and the mapping of instruction slots to execu-
tion unit types. Not al combinations of these two properties are allowed - Table C-2 indicates the defined combinations.
The three rightmost columns correspond to the three instruction slots in a bundle; listed within each column is the execu-
tion unit type controlled by that instruction slot for each encoding of the template field. A double line to the right of an
instruction slot indicates that a stop occurs at that point within the current bundle. See “Instruction Encoding Overview”

on page 3-11 for the definition of a stop. Within a bundle, execution order proceeds from slot 0 to slot 2. Unused template

values (appearing as empty rows in Table C-2) are reserved and cause an lllegal Operation fault.

Extended instructions, used for long immediate integer instructions, occupy two instruction slots.

HP/Intel |IA-64 Instruction Formats C-1

IA-64 Application ISA Guide 1.0

Table C-2. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit I-unit I-unit
01 M-unit I-unit I-unit H
02 M-unit [-unit I-unit ‘
03 M-unit [-unit [-unit H
04 M-unit L-unit X-unit ‘
05 M-unit L-unit X-unit
06
07
08 M-unit M-unit I-unit
09 M-unit M-unit [-unit H
0A M-unit [[M-unit I-unit ‘
0B M-unit M-unit [-unit H
ocC M-unit F-unit I-unit ‘
0D M-unit F-unit I-unit H
OE M-unit M-unit F-unit \

C.l1 Format Summary

All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of each instruction are the major

opcode. Table C-3 shows the major opcode assignments for each of the 5 instruction types — ALU (A), Integer (1), Mem-
ory (M), Floating-point (F), and Branch (B). Bundle template bits are used to distinguish among the 4 columns, so the
same major op values can be reused in each column.

Unused major ops (appearing as blank entries in Table C-3) behave in one of three ways:

« Ignored major ops (white entries in Table C-3) executepsnstructions.

« Reserved major ops (light gray in the grayscale version of Table C-3, brown in the color version) cause an lllegal

Operation fault.

* Reserved if PR[gp] is 1 major ops (dark gray in the grayscale version of Table C-3, purple in the color version) cause
an lllegal Operation fault if the predicate register specified by the qp field of the instruction (bits 5:0) is 1 and execute

as anop instruction if 0.

C-2 IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

Table C-3. Major Opcode Assignments

Major Instruction Type
Op
(bits 17 M/A F B L+X
40:37)
0 Mem Mgmt

Mem Mgmt

Deposit | Int Ld +Reg/getf*, FP Compare °
Shift/Test Bit °| Int Ld/St +Imm ° FP Class

FP Ld/St +Reg/se€t

MM Mpy/Shift FP Ld/St +Imm ’

fms

fms
fnma
fnma

Table C-4 on page C-4 summarizes al the instruction formats. The instruction fields are color-coded for ease of identifi-
cation, as described in Table C-5 on page C-6.

Theinstruction field names, used throughout this chapter, are described in Table C-6 on page C-7. The set of special nota-
tions (such aswhether an instruction must befirst in an instruction group) are listed in Table C-7 on page C-7. These nota-
tions appear in the “Instruction” column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one instruction field. For example, the 14-
bit immediate in the Add Imm instruction (format A4) is formed from the impgy immgy, and s fields. Table C-65 on
page C-57 shows how the immediates are formed from the instruction fields for each instruction which has an immediate.

HP/Intel |IA-64 Instruction Formats C-3

IA-64 Application ISA Guide 1.0

403938373635343332313029282726252423222120191817161514131211109 8 76 54 3 2 1 0

Table C-4. Instruction Format Summary

ALU Al 8 XoaVe X4 |Xop ra ry ry
ShiftLand Add A2| 8 XoaVe X4 [Clog rs r r
ALU Immg A3l 8 [S|XoaVg Xq |Xop rs immyzy, r
Addlmmy, A4 8 |[S|XpaMe IMMgy rs immyzy, r
Add Immy, A5l 9 |s immse | I3 immyz, r
Compare A6[C-E [t Xp I3 r c
Compareto Zero A7| C-E |ty Xo ra 0 c
Comparelmmg A8| C-E |s| X, r3 immz, |C
MM ALU A9l 8 Xoa ra ry ry
MM Shift and Add A10] 8 Xq4 |Clog rs r r
MM Multiply Shift 12~ 7 2 Xpa ZgVaClog Xap I3 r r
MM Mpy/Mix/Pack 12| 7 |23 X0aZpVd Xoe | Xop rs r r
MM Mux1 13 7 Z4X0aZpVe Xoc | Xop - mbtye rs r
MM Mux2 14 7 |Z4X0a[ZpVd Xoc | Xop mhtg, r r
Shift R Variable 15| 7 |23 X04ZuVe Xoe | Xop r r
MM Shift RFixed 16| 7 [Z3X0a[ZpVd Xoe | Xop countgy r
Shift L Variable 17| 7 23 X041ZpVd Xoc | Xop rs r
MM Shift L Fixed 18| 7 [Z3X2aZpVd Xoc| X2op ccounts, ry
Popcount 19 7 |Z4X0a[ZgVd Xoc | Xop r3 0 r
Shift Right Pair 120[5 X | X| COUNtgq 7
Extract 1 5 Xo [X| lengg posg, Y r
Dep.Z 112 5 Xo [X| lengg |y| cposge r
Dep.ZImmg 113] 5 |[S|Xp|X| lengg |y| CpoOSee immyzy, r
DepositImm, 114| 5 |S|Xp |X| lengg rs CpOSgp ry
Deposit 115 4 CPOSgy lengg r3 r
Test Bit 116] 5 [tp Xp It 3 POSg, Y C
Test NaT 117 5 |ty Xo [t rs ylc
Break/Nop 119] 0 |1] X3 X5 | TMMo0n
Int Spec Check 120 0 || X3 immy 3¢ r immz,
MovetoBR 121] 0 X3 X I by
MovefromBR 122| 0 X3 Xg | by ry
MovetoPred 123) O |s| X3 | | maskg, | rs mask-4
Moveto Pred Immyyi24) 0 [s| X3 iMMy74
Move from Pred/IP 125 0 X3 Xg r
MovetoAR 126 O X3 Xg arg r
Moveto ARImmg 127 0 |s| X3 Xg arg immyzy,
MovefromAR 128) O X3 Xg r
Sxt/Zxt/Czx 129] O X3 Xg rs r
403938373635343332313029282726252423222120191817161514131211109 8 76 54 3 2 1 0
C-4 IA-64 Instruction Formats

IA-64 Application ISA Guide 1.0

Table C-4. Instruction Format Summary (Continued)
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Int Load M1 4 m X6
IntLoad+Reg M2 4 m Xg
IntLoad+Imm M3 5 |s Xg
Int Store M4 4 m Xg
Int Store+lImm M5/ 5 s Xg
FP Load M6 6 |m Xg
FPLoad+Reg M7/ 6 |m Xg
FPLoad +Imm wm8| 7 |s Xg
FP Store M9, 6 m Xg
FP Store+Imm wm10| 7 |s Xg
FPLoad Pair Mm11| 6 |m Xg
FPLoad Pair +immmi12| 6 |m Xg
LinePrefetch M13] 6 |m Xg
Line Prefetch +RegM14| 6 |m X6
Line Prefetch +lmmmis| 7 |[s Xg
(Cmp &) Exchg mM16] 4 |m Xg
Fetch& Add wm17| 4 |m Xg
Set FR M18| 6 |m Xg

Get FR M9l 4 m X6

Int Spec Check M20| 1 [s| X3
FP Spec Check m™m21| 1 |s| X3
Int ALAT Check mM22| 0 |s| X3
FP ALAT Check m23] 0 |s| X3
Sync/SrlzZ/ALAT m24/ O X3 | Xo
RSE Control ~ m25{ O X3 | X
Int ALAT Inval m26/ O X3 | Xo
FPALAT Inval m27, 0 X3 | Xo
Flush Cache w28 1 X3
MovetoAR mM29] 1 X3
Moveto ARImmgmM30, 0 |s| X3 | Xp|
MovefromAR mwm31| 1 X3
Alloc m34| 1 X3 | sor
MovetoPSR M35 1 X3
Movefrom PSR ™36 1 X3
Break/Nop m37] 0 |i| X3 | X5
Mvfromind w43 1 X3
Set/Reset Mask M44 0 1 X3 iZd

403938373635343332313029282726252423222120191817161514131211109 8 76 54 3 2 1 0

HP/Intel |IA-64 Instruction Formats

IA-64 Application ISA Guide 1.0

IP-Relative Branch B1
Counted Branch
IP-Relative Call
Indirect Branch

Indirect Call
Misc
Break/Nop
FP Arithmetic
Fixed Multiply Add F2
FP Select F3
FP Compare F4
FP Class F5
FP Recip Approx F6

FP Recip Sart App F7

FP Min/Max/Pcmp F8

FP Merge/Logica F9

Convert FP to Fixed F10
Convert Fixed to FPF11
FP Set Controls F12
FPClear Flags F13
FP Check Flags F14
Break/Nop F15
Break/Nop X1
Movelmmg, X2

Table C-4. Instruction Format Summary (Continued)
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

iWW%
iWW%
iWW%
Xg | b,
)
i immzoa
X b
E X| Xo b
E X f2
4 ry Sfr fo
0-1 |q sf|x b
0-1 |q sf|x
0-1 sf [x b
0-1 X f2
0-1 | sf |x f2
0 X b
0 sf |x arﬂ@(ﬂ)
0 sf |x
0 |s|sf|x iMMogg
0 i X immyg,
0 1] X3 X5 TMMo0,
6 i immggy immse [ivd immy,

403938373635343332313029282726252423222120191817161514131211109 8 76 54 3 2 1 0

Table C-5. Instruction Field Color Key

Field & Color

ALU Instruction Opcode Extension
Integer Instruction
Memory Instruction

Floating-point Instruction
Integer Source

Shift Immediate

Specia Register Destination
Floating-point Source
Branch Source

Ignored Field/Instruction

C-6 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-6. Instruction Field Names

Field Name Description
ar application register source/target
by, by branch register source/target
btype branch type opcode extension
c complement compare relation opcode extension
ccount, multimedia shift left complemented shift count immediate
county, coungy | multimedia shift right/shift right pair shift count immediate
Cpog deposit complemented bit position immediate
Ctyg multimedia multiply shift/shift and add shift count immediate
d branch cache deallocation hint opcode extension
fn floating-point register source/target
fc,, feclasg, floating-point class immediate
hint memory reference hint opcode extension
I, igp, Ig immy | immediate of length 1, 2, or
lenyy, lengg extract/deposit length immediate
m memory reference post-modify opcode extension
mask predicate immediate mask
mbty., mhig, multimedia mux1/mux2 immediate
p sequential prefetch hint opcode extension
P1, P2 predicate register target
PO%p test bit/extract bit position immediate
q floating-point reciprocal/reciprocal square-root opcode extension
ap qualifying predicate register source
[general register source/target
S immediate sign bit
sf floating-point status field opcode extension
sof, sol, sor alloc size of frame, size of locals, size of rotating immediates
ta by compare type opcode extension
Vy reserved opcode extension field
wh branch whether hint opcode extension
X, Xn opcode extension of length 1 ror
y extract/deposit/test bit/test NaT opcode extension
Za % multimedia operand size opcode extension

Table C-7. Special Instruction Notations

Notation Description

f instruction must be the first in an instruction group
I instruction must be the last in an instruction group
t instruction is only allowed in instruction slot 2

The remaining sections of this chapter present the detailed encodings of all instructions. The “A-Unit Instruction encod-
ings” are presented first, followed by the “I-Unit Instruction Encodings” on page C-16, “M-Unit Instruction Encodings”
on page C-26, “B-Unit Instruction Encodings” on page C-45, “F-Unit Instruction Encodings” on page C-49, and “X-Unit
Instruction Encodings” on page C-56.

Within each section, the instructions are grouped by function, and appear with their instruction format in the same order as
in Table C-4, “Instruction Format Summary,” on page C-4. The opcode extension fields are briefly described and tables
present the opcode extension assignments. Unused instruction encodings (appearing as blank entries in the opcode exter
sions tables) behave in one of three ways:

HP/Intel |IA-64 Instruction Formats C-7

IA-64 Application ISA Guide 1.0

« Ignored instructions (white entries in the tables) execute@sstructions.

« Reserved instructions (light gray in the grayscale version of the tables, brown in the color version) cause an lllegal
Operation fault.

« Reserved if PR[gp] is 1 instructions (dark gray in the grayscale version of the tables, purple in the color version)
cause an lllegal Operation fault if the predicate register specified by the gp field of the instruction (bits 5:0) is 1 and
execute as aop instruction if 0.

Constant O fields in instructions must be 0 or undefined operation results. The undefined operation may include checking
that the constant field is 0 and causing an lllegal Operation fault if it is not. If an instruction having a constanise field a
has a qualifying predicate (qp field), the fault or other undefined operation must not occur if PR[gp] is 0. For constant O
fields in instruction bits 5:0 (normally used for gp), the fault or other undefined operation may or may not depend on the
PR addressed by those bits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in this revision of the architecture,
future architecture revisions may define these fields as hint extensions. These hint extensions will be defined such that the
0 value in each field corresponds to the default hint. It is expected that assemblers will automatically set these fields to
zero by default.

C.2 A-Unit Instruction Encodings

C.21 Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode extension field in bits 3p:34 (x
and most have a second 2-bit opcode extension field in bits 28;97&>4-bit opcode extension field in bits 32:29)(x

and a 1-bit reserved opcode extension field in bit 3} (lable C-8 shows the 2-bit,xand 1-bit y assignments,

Table C-9 shows the integer ALU 4-bit+2-bit assignments, and Table C-12 on page C-13 shows the multimedia ALU 1-
bit+2-bit assignments (which also share major opcode 8).

Table C-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode | Xy,
Bits Bits
40:37 | 35:34 0
0 Integer ALU 4-bit+2-bit Ext (Table C-9)
8 1 Multimedia ALU 1-bit+2-
2 adds — imm, A4
3 addp4 — imng, A4
Table C-9. Integer ALU 4-bit+2-bit Opcode Extensions
Opcode | Xoy | Ve Xq Xop
Bits Bits | Bit | Bits Bits 28:27
40:37 | 35:34 | 33 | 32:29 0 1
add Al add +1 A1
sub -1 Al sub Al
addp4 Al
and Al or Al
shladd A2
8 0 0 | |

-
R R R B
|

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

C-8 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

c.21l1 Integer ALU — Register-Register

40 373635343332 29282726 2019 1312 6 5 0
o e e b 6w | o
4 1 2 1 4 2 7 7 7 6
Instruction | Operands | Opcode Extension
X2a | Ve X4 X(%b
1 =ry1I3
add =Ty r3,1 0 1
I’1=r2, r3 1
sub I’1=r2, I’3,1 0
addp4 8 0 0 0
and 0
andcm r{=rpr3 3 1
or 2
xor 3
C.2.1.2 Shift Left and Add
40 373635343332 2928 27 26 2019 1312 6 5 0
A2 |18] [aaVe X [eod T " n e
4 1 2 1 4 2 7 7 7 6
I nstruction Operands Opcode Extension
shiadd Yo 4
shladdp4 r{ =rp, county, rs 8 0 0 6
C.213 Integer ALU — Immediate g-Register
40 373635343332 292827 26 2019 1312 6 5 0
po [0 bt xg e w | ew o [
4 1 2 1 4 2 7 7 7 6
Instruction | Operands | Opcode Extension
Xoa | Ve Xq | Xop
sub 9 1
and 0
andcm r{=immg, ra 8 0 0 B 1
or 2
xor 3
C214 Add Immediate 14
40 373635343332 27 26 2019 1312 6 5 0
a8 Jshoave ey | | e | o
4 1 2 1 6 7 7 7 6
Instruction Operands Opcode Extension
add e
S .
‘ addp4 ‘ rq=immy, ra ‘ 8 3 0
C.215 Add Immediate 5,
40 373635 27 26 22212019 1312 6 5 0
po (805 immeg e [e o
4 1 9 5 2 7 7 6

Instruction Operands Opcode
addl r= immzz, s 9

HP/Intel |IA-64 Instruction Formats C-9

IA-64 Application ISA Guide 1.0

C.2.2

The integer compare instructions are encoded within major opcodes C — E using a 2-bit opcode extensipiirfieis (x
35:34 and three 1-bit opcode extension fields in bits 3336 (},), and 12 (c), as shown in Table C-10. The integer com-
pare immediate instructions are encoded within major opcodes C — E using a 2-bit opcode extensioh ifielidtgx

Integer Compare

35:34 and two 1-bit opcode extension fields in bits Y3aftd 12 (c), as shown in Table C-11.

Table C-10. Integer Compare Opcode Extensions

X5 tp | ta | C Opcode
Bits | Bit | Bit | Bit Bits 40:37
35:34 | 36 | 33 | 12 C D E
0 0 cmp.lt A6 cmp.ltu A6 cmp.eq A6
0 1 cmp.lt.unc A6 cmp.ltu.unc A6 cmp.eg.unc A6
1 0 cmp.eq.and A6 cmp.eg.or A6 cmp.eg.or.andcm A6
0 1 cmp.ne.and A6 cmp.ne.or A6 cmp.ne.or.andcm A6
0 0 cmp.gt.and A7 cmp.gt.or A7 cmp.gt.orandcm A7
1 1 cmp.leand A7 cmp.le.or A7 cmp.le.or.andcm A7
1 0 cmp.ge.and A7 cmp.ge.or A7 cmp.ge.or.andcm A7
1 cmp.lt.and A7 cmp.lt.or A7 cmp.lt.or.andem A7
0 0 cmp4.it A6 cmp4.ltu A6 cmpd.eq A6
0 1 cmp4.lt.unc A6 cmp4.Itu.unc A6 cmp4.eg.unc A6
1 0 cmp4.eg.and A6 cmp4.eq.or A6 cmp4.eg.or.andcm A6
1 1 cmp4.ne.and A6 cmp4.ne.or A6 cmp4.ne.or.andcm A6
0 0 cmp4.gt.and A7 cmp4.gt.or A7 cmp4.gt.or.andcm A7
1 1 cmp4.leand A7 cmp4.le.or A7 cmp4.le.or.andecm A7
1 0 cmp4.ge.and A7 cmpd.ge.or A7 cmp4.ge.or.andcm A7
1 cmp4.lt.and A7 cmp4.lt.or A7 cmp4.lt.or.andcm A7
Table C-11. Integer Compare Immediate Opcode Extensions
X5 ty | € Opcode
Bits | Bit | Bit Bits 40:37
35:34 | 33 | 12 C D E
0 0 cmp.lt —imny A8 cmp.ltu — imng A8 cmp.eq —imrg A8
2 1 cmp.lt.unc — imrg A8 cmp.ltu.unc — imrg A8 cmp.eg.unc — imgmA8
1 0 cmp.eq.and — imgA8 cmp.eq.or — imgy A8 cmp.eq.or.andcm — imgrA8
1 cmp.ne.and — immA8 cmp.ne.or — imy A8 cmp.ne.or.andcm — imgrA8
0 0 cmp4.lt —imng A8 cmp4.ltu —imng A8 cmp4.eq —imrg A8
3 1 cmp4.lt.unc —imrg A8 cmp4.ftu.unc —imgyA8 cmp4.eq.unc — imgmA8
1 0 cmp4.eq.and — imgA8 cmp4.eq.or — imypA8 cmp4.eq.or.andcm — imgrA8
1 cmp4.ne.and — imgA8 cmp4.ne.or — immA8 cmp4.ne.or.andcm — imgrA8
C-10 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

c221

Integer Compare — Register-Register

40

373635343332

2726

2019

131211

6 5 0

A6 ‘ C-E ‘tb‘ Xz‘t P2

9

o [

4

1 2 1 6

6 6

Instruction

Operands

Opcode

Extension

X2

tb ta Cc

cmp.lt
cmp.ltu

cmp.eq

cmp.lt.unc
cmp.ltu.unc
cmp.eg.unc

cmp.eg.and
cmp.eq.or
cmp.eg.or.andcm

cmp.ne.and
cmp.ne.or
cmp.ne.or.andcm

cmp4.lt
cmp4.ltu

cmp4.eq

cmp4.lt.unc
cmp4.ltu.unc

cmp4.eg.unc

cmp4.eg.and
cmp4.eq.or
cmp4.eg.or.andcm

cmp4.ne.and
cmp4.ne.or
cmp4.ne.or.andcm

P P2=T2 T3

moOoOmMOOMmMOOMmMOOMOOMOOMmMOOMmMOO

HP/Intel

IA-64 Instruction Formats

C-11

IA-64 Application ISA Guide 1.0

C.2.2.2 Integer Compare to Zero — Register
40 373635343332 2726 2019 131211 6 5 0

A7 [C-E iy xe W] T2 s e

4 1 2 1 6 7 7 1 6 6

Extension

Instruction Operands Opcode
X2 tb ta Cc

cmp.gt.and
cmp.gt.or
cmp.gt.or.andcm
cmp.leand
cmp.le.or
cmp.le.or.andcm
cmp.ge.and
cmp.ge.or
cmp.ge.or.andcm
cmp.lt.and
cmp.lt.or
cmp.lt.or.andem
cmp4.gt.and
cmp4.gt.or
cmp4.gt.or.andcm
cmp4.leand
cmp4.le.or
cmp4.le.or.andcm
cmp4.ge.and
cmp4.ge.or
cmp4.ge.or.andcm
cmp4.lt.and
cmp4.lt.or
cmp4.lt.or.andcm

P1, P2 =10, 13

mOoOomOOmMOOMmMOOMOOMmMmOOMmMmOOMmOO

C-12 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

c.2.23 Integer Compare — Immediate-Register
40 373635343332 2726 2019 131211 6 5 0

s (G |Su W MBI o | i ol M R
2 1

4 1 6 7 7 1 6 6

Extension

Instruction Operands Opcode
X9 ta C

cmp.It

cmp.ltu

cmp.eq
cmp.lt.unc
cmp.ltu.unc
cmp.eq.unc
cmp.eg.and
cmp.eq.or
cmp.eg.or.andcm
cmp.ne.and
cmp.ne.or
gmgﬂet.or.andcm D1, Py = iMMg, 15
cmp4.ltu

cmp4.eq
cmp4.lt.unc
cmp4.ltu.unc
cmp4.eg.unc
cmp4.eg.and
cmp4.eq.or
cmp4.eg.or.andcm
cmp4.ne.and
cmp4.ne.or
cmp4.ne.or.andcm

mOoOOmOOmMmOOMmMOOMmMOOMmMmOOMmMmOOMmOO

C.23 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit opcode extension fields in bits 36
(zy) and 33 (z,) and a 2-bit opcode extension field in bits 35:34 (x,;) as shown in Table C-12. The multimedia ALU
instructions also have a 4-bit opcode extension field in bits 32:29 (x,), and a 2-bit opcode extension field in bits 28:27
(X5p) as shown in Table C-13 on page C-14.

Table C-12. Multimedia ALU 2-bit+1-bit Opcode Extensions

X2a Zy)
Bﬁgj‘gﬁ; Bits Bit | Bit
' 35:34 36 33
0 0 MultimediaALU Size 1 (Table C-13)
8 1 1 Multimedia ALU Size 2 (Table C-14)
1 0 Multimedia ALU Size 4 (Table C-15)
.

HP/Intel |IA-64 Instruction Formats C-13

IA-64 Application ISA Guide 1.0

Table C-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

Opcode | X5 | Z4 | Zy Xq Xop
Bits Bits | Bit | Bit | Bits Bits 28:27
40:37 | 35:34 | 36 | 33
8 1 0 0
Table C-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions
Opcode | Xon | Z5 | Zy Xq Xop
Bits Bits | Bit | Bit | Bits Bits 28:27
40:37 | 35:34 | 36 | 33
8 1 0 1

C-14 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

X2p
Bits 28:27

Opcode | X5 | Z4 | Zy Xq
Bits Bits | Bit | Bit | Bits
40:37 | 35:34 | 36 | 33
8 1 1 0
C.23.1 Multimedia ALU

373635343332

2928 27 26

1312

A9 !ZJXza\ZJ K e

1 2 1

Instruction

Operands

Extension

N
o¥]

Zp

paddl
padd2
padd4
paddl.sss
padd2.sss
paddl.uuu
padd2.uuu
paddl.uus
padd2.uus
psubl
psub2
psub4
psubl.sss
psub2.sss
psubl.uuu
psub2.uuu
psubl.uus
psub2.uus
pavgl
pavg2
pavgl.raz
pavg2.raz
pavgsubl
pavgsub2
pcmpl.eq
pcmp2.eq
pcmp4.eq
pcmpl.gt
pcmp2.gt
pcmp4.gt

[1=1y1T3

oO| Ok O O] O O |, O

o

OrRP O OFrRORFROFROFRORFRORFRPORFROORFRORFRORFRORFROQOORrJO

= O | O

HP/Intel

IA-64 Instruction Formats

C-15

IA-64 Application ISA Guide 1.0

C.23.2

C.3

C31

Multimedia Shift and Add

40 373635343332 29282726 2019 1312 6 5 0
oo EEREECE -
4 1.2 1 4 2 7 ; . -
Instruction Operands Opcode Extension
shiadd2 Xea | Za | T X4
p =
pshradd2 | 17 "2 countz, 3 8 1,0 1 ¢

I-Unit Instruction Encodings

Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift instructions are encoded within major
opcode 7 using two 1-bit opcode extension fieldsin bits 36 (z,) and 33 (z,,) and a 1-bit reserved opcode extension in bit 32
(ve) asshown in Table C-16. They also have a 2-bit opcode extension field in bits 35:34 (x,,) and a 2-bit field in bits 29:28
(Xop) and most have a 2-bit field in bits 31:30 (x,.) as shown in Table C-17.

Table C-16. Multimedia and Variable Shift 1-bit Opcode Extensions

Opcode | z, | z, Ve
Bits Bit | Bit Bit 32
40:37 | 36 | 33 0
0 0 | MultimediaSize 1 (Table C-17)
7 1 | MultimediaSize 2 (Table C-18)
1 L0 M ultimedia Size 4 (Table C-19)
1 Variable Shift (Table C-20)

Table C-17. Multimedia Max/Min/Mix/Pack/Unpack Size 1 2-bit Opcode Extensions

OpCOde Zy Zy Ve X2a Xop Xoc
Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 | 35:34
0
1
I
7 0|0 o0 I R —
unpackLh 2
2 pminl.ul2 pmax1.ul2 !
unpack1.l 12 mix1l 12 !
| psadli2 |
I
3 I R —
| |

C-16

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

Table C-18. Multimedia Multiply/Shift/Max/Min/Mix/Pack/Unpack Size 2 2-bit Opcode Extensions

Opcode | zy | 2, | Ve | Xpa X2b X2¢
Bits Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 | 35:34 | 29:28 0 1
0 pshr2.u—var I5| pshl2 —var 7
0 1 pmpyshr2.u 11
2 pshr2 —var 15 |
3 pmpyshr2 11
0 |
1 1 pshr2.u — fixed 16 popcnt 19
2 1.~ £ 1 1~ I éié
7 0 1 0 3 pshr2 — fixed 16 _
0 pack2.uss |2 unpack2.h 12 !
2 1 | _ pmpy2.r 12
2 pack2.sss 12 unpack2.l 12 mix2.l 12 !
3 pmin2 12 pmax2 12 pmpy2.1'12
O %. 7Q
3 1 pshl2 — fixed 18
2 mux2 14|
3 |
Table C-19. Multimedia Shift/Mix/Pack/Unpack Size 4 2-bit Opcode Extensions
Opcode | zy | 2, | Ve | Xza | Xpp Xoc
Bits Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 | 35:34 : 0 1
pshr4.u—var I5| pshl4 —var I7
T .
0 pshrd—varl5 [
I
_ |
1 pshrd.u — fixed 16 |
7 1 0 0 pshr4 — fixed 16 _
unpack4.h 12
I R
2 pack4.sss 12 unpack4.| 12 mix4.l 12
}
3 pshl4 — fixed I8
I
I

HP/Intel

IA-64 Instruction Formats

C-17

IA-64 Application ISA Guide 1.0

Table C-20. Variable Shift 2-bit Opcode Extensions

C311

C31.2

37 36 3534 3332313029 28 27 26 2019 1312 6 5
LT e | n | n
1 2 11 7 7 7
Instruction Operands Opcode Extension
s Zy Zy Ve | Xoa X%b
pmpysnr —
pmpyshr2.u rq =ry, I, count, 7 0 1 0 0 1
Multimedia Multiply/Mix/Pack/Unpack
40 37 36 3534 3332313029 28 27 26 2019 1312 6 5
2 [7 w6 | o [
4 2 11 7 7 7 6
Instruction | Operands | Opcode Extension
5 Zy Zh Ve | Xoa Xib X2c
pmpye.r
pmpy2.| 0 1 3 3
mix1.r 0 0
mix2.r 0 1 0
mix4.r 1 0 2
mix1.| 0 0
mix2.| 0 1 2
mix4.| 1 0
pack2.uss 0 1 0
pack2.sss 0 1 > 0
pack4.sss _ 1 0
unpackL.h | '17"2"3 ! 0 o1 O 2
unpack2.h 0 1 0
unpack4.h 1 0 1
unpackl.l 0 0
unpack?2.1 0 1 2
unpack4.1 1 0
pminl.u 0
pmax1.u 0 0 1 1
pmin2 0
pmax2 0 L 3 1
psadl 0 0 3 2

Multimedia Multiply and Shift

Opcode | 2y | 2, | Ve | Xpa X2b X2¢
Bits Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 | 35:34 : 0 1
shr.u — var I5 shl —var 7

0 ~shr—varls |

1
7 1 1 0

2

3

C-18

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

C.3.1.3 Multimedia Mux1

40 373635343332313029 2827 2423 2019 1312 6 5 0
3| 7 ZXaZileXecam Mblg 1o n [INEE
4 12 11 2 2 4 4 7 7 6
I nstruction Operands Opcode Extension
Zy Zp Ve | Xoa | Xop | X3¢
mux1 rq =ro, mbtype, 7 0 0 0 3 2 2
C3.14 Multimedia Mux2
40 3736 35343332313029 2827 2019 1312 6 5 0
o7 e e n o u [
4 1 2 11 2 2 8 7 7 6
I nstruction Operands Opcode Extension
Zy Zp Ve | Xoa | Xop | Xpc
mux2 r{ =r,, mhtypeg 7 0 1 0 3 2 2
C.3.15 Shift Right — Variable
37 36 3534 333231 3029 28 27 26 2019 1312 6 5 0
s [T e [n [N
7 7 6
Instruction | Operands | Opcode Extension
Zy Zp Ve | Xoa | Xop | Xpc
pshr2 0 1
pshr4 1 0 2
shr _ 1 1
pshr2.u 1=1a 12 ! 0 1 0 0 0
pshrd.u 1 0 0
shr.u 1 1
C.3.1.6 Multimedia Shift Right — Fixed
37 36 3534 333231 3029 28 27 26 201918 141312 6 5 0
6 [T] [e |
7 6
Instruction Operands Opcode Extension
Za Zp Ve | Xoa | Xob | X3¢
pshr2 0 1 3
pshr4 _ 1 0
pshr2.u ry =rs, countg 7 0 1 0 1) 0
pshr4.u 1 0
C.3.1.7 Shift Left — Variable
40 3736353433323130292827 26 2019 1312 6 5 0
7 LT e |
4 1 2 11 2 2 7 7 7 6
Instruction | Operands | Opcode Extension
Za Zp Ve | Xoa | Xop | Xpc
pshl2 0 1
pshl4 r{=rp I3 7 1 0 0 0 0 1
shl 1 1

HP/Intel |IA-64 Instruction Formats C-19

IA-64 Application ISA Guide 1.0

C.3.1.8 Multimedia Shift Left — Fixed

40 3736353433323130292827 2524 2019 1312 6 5 0
8 | 7 e oo
4 12 11 2 2 3 5 7 7 6
. Extension
Instruction Operands Opcode
o Zdal Zf Ve | Xoa | Xob | X3¢
p -
pshi4 ry =rp, countg 7 1 0 0 3 1 1
C.3.1.9 Population Count
40 37 36 3534 3332313029 28 27 26 2019 1312 6 5 0
o |7 Zaxeaziidxacxam | 1o 0 n [
4 1 2 11 2 2 1 7 7 7 6
. Extension
Instruction | Operands | Opcode
Zy Zp Ve | Xoa | Xop | X3¢
popcnt ri=rs3 7 0 1 0 1 1 2

C.3.2 Integer Shifts

The integer shift, test bit, and test NaT instructions are encoded within major opcode 5 using a 2-bit opcode extension
field in bits 35:34 (x,) and a 1-hit opcode extension field in bit 33 (x). The extract and test bit instructions also have a 1-bit
opcode extension field in bit 13 (y). Table C-21 shows the test bit, extract, and shift right pair assignments.

Table C-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

Opcode | X, X y
bits bits | bit bit 13
40:37 | 35:34 | 33 0 1
0 Test Bit (Table C-23) Test NaT (Table C-23)
1 extr.u 11 extr 111
5 5 0
3 shrp 110

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y). Table C-22 shows these assignments.
Table C-22. Deposit Opcode Extensions

Opcode | X, X y
bits bits | bit bit 26
40:37 | 35:34 | 33 0 \ 1
0 Test Bit/Test NaT (Table C-23)
5 1 1 dep.z112 dep.z —imrg 113
2
3 dep — imm 114

c.3.21 Shift Right Pair

40 373635343332 2726 2019 1312 6 5 0
110 | 5 | [x[x] couny
4 1 2 1 6 7 7 7 6
. Extension
Instruction Operands Opcode X X
2
shrp rq=ry, I3, countg 5 3 0

C-20 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.3.2.2 Extract
40 373635343332 2726 2019 141312 6 5
15 e ew LG s v o [
4 1 2 1 6 7 6 1 7
I nstruction Operands Opcode Extension
X2 X y
extr.u 0
extr ry=rs, posg, leng 5 1 0 1
c.3.2.3 Zero and Deposit
40 373635343332 272625 2019 1312 6 5
2 |5 el ey G
4 1 2 1 6 1 6 7
I nstruction Operands Opcode Extension
X2 X y
dep.z r{ ="ro, poSg, leng 5 1 1 0
Cc.3.24 Zero and Deposit Immediateg
40 373635343332 272625 2019 1312 6 5
35 s e b wose | mmn | (G
4 1 2 1 6 1 6 7 7
Instruction Operands Opcode Extension
X5 X y
dep.z ry =immg, posg, leng 5 1 1 1
C.3.25 Deposit Immediate;
40 373635343332 2726 2019 141312 6 5
ne s sk e | u | oo || o |NGEN
4 1 2 1 6 7 6 1 7
Instruction Operands Opcode I)E(xtensu:(n
2
dep r{ =immy, ra, posg, leng 5 3 1
C.3.26 Deposit
40 37 36 3130 2726 2019 1312 6 5
115 | 4 | cpossq | lengg | 13
4 6 4 7 7 7
Instruction Operands Opcode
dep r{="ro, 3, POSg, len, 4
HP/Intel 1A-64 Instruction Formats C-21

IA-64 Application ISA Guide 1.0

C.33 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode extension field in bits 35:34 (x,) plusfour
1-bit opcode extension fields in bits 33 (t,), 36 (1), 12 (c), and 19 (y). Table C-23 summarizes these assignments.

Table C-23. Test Bit Opcode Extensions

Opcode | X, tg | tp | C y
bits bits | bit | bit | bit bit 13
40:37 | 3534 | 33 | 36 | 12 0 1
0 0 thit.z 116 tnat.z 117
0 1 tbit.z.unc 116 tnat.z.unc 117
1 0 tbit.z.and 116 tnat.z.and 117
5 0 1 thit.nz.and 116 tnat.nz.and 117
0 0 thit.z.or 116 tnat.z.or 117
1 1 thit.nz.or 116 tnat.nz.or 117
1 0 thit.z.or.andcm 116 tnat.z.or.andcm 117
1 | tbit.nz.orandcm 16 | tnat.nz.or.andcm 17
Cc.3.3.1 Test Bit
40 373635343332 27 26 2019 14131211 6 5 0
116 | 5 o xeltd P2 "3 Possy vy P [
4 1 2 1 6 7 6 11 6 6
Instruction Operands Opcode Extension
Xo ta tb Yy C
thit.z 0 0
thit.z.unc 0 1
thit.z.and 1 0
thit.nz.and 1
thit.z.or P1. P2 =3, POSe 5 0 0 0
thit.nz.or 1 0 1
thit.z.or.andcm 1 0
thit.nz.or.andcm 1
C.3.3.2 Test NaT
40 373635343332 2726 2019 14131211 6 5 0
w7 [5 ot MR vel m [
4 1 2 1 6 7 6 11 6 6
Instruction Operands | Opcode Extension
Xo ta tb Yy C
tnat.z 0 0
tnat.z.unc 0 1
tnat.z.and 1 0
tnat.nz.and _ 1
tnat.z.or P, P2=T3 5 0 0 1 0
tnat.nz.or 1 1
tnat.z.or.andcm 1 0
tnat.nz.or.andcm 1
C-22 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.34 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode O using a 3-bit opcode extension field (x3) in bits
35:33. Some also have a 6-bit opcode extension field (xg) in bits 32:27. Table C-24 shows the 3-bit assignments and
Table C-25 summarizes the 6-bit assignments.

Table C-24. Misc I-Unit 3-bit Opcode Extensions

Opcode X3
Bits40:37 | Bits35:33
0 6-bit Ext (Table C-25)
1 chk.s.i—int 120
2 mov to pr.rot — immy 124
0 3 mov to pr 123

4
5
6
7 mov to b 122

Table C-25. Misc I-Unit 6-bit Opcode Extensions

Opcode | X3 Xg
Bits Bits Bits Bits 32:31
40:37 | 35:33 | 30:27 0 1 2 3
break.i 119 Zxt1 129 mov from ip 125
nop.i 119 Zxt2 129 mov from b 122
zxt4 129 mov.i from ar 128
mov from pr 125
sxtl 129
sxt2 129
sxt4 129
[I
0 0 \ czx1.l 129
\ czx2.1 129
mov.i to ar — imrg 127 . mov.itoarl26 |
[N ——
. czxlri29 [
. czx2ri29 [
| |
| |
C.341 Break/Nop (I-Unit)

40 373635 3332 272625
119 | 0 lilx| x5 || MMy,
4 1 3 6 1 20
Instruction | Operands | Opcode Extension
X3 X6
break.i . 00
nop.i IMMa1 0 0 01
C.342 Integer Speculation Check (I-Unit)
40 373635 3332 2019 1312 6 5 0
o % iy o | G
4 1 3 13 7 7 6
Instruction | Operands | Opcode Extinson
3
chk.s.i ro, targetyg 0 1

HP/Intel |IA-64 Instruction Formats

C-23

IA-64 Application ISA Guide 1.0

C.35 GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit Instructions” on page C-23 for
a summary of the opcode extensions. The mov to BR instruction uses a 1-bit opcode extension field (x) in bit 22 to distin-
guish the return form from the normal form.

C.35.1 Move to BR

40 373635 3332 242322212019 1312 9 8 6 5 0
21 | 0| [X | no 1 [b RGN
4 1 3 10 1 2 7 4 3 6
I nstruction Operands | Opcode I)E(xtensuz(n
3
mov b1:r2 0 7 0
mov.ret 1
C.3.5.2 Move from BR
40 373635 3332 2726 1615 1312 6 5 0
22 [0 | [] b o SN
4 1 3 6 11 3 7 6
Instruction | Operands | Opcode Extension
X3 Xe
mov ri=b, 0 0 31

C.3.6 GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit Instructions” on
page C-23 for a summary of the opcode extensions.

C.3.6.1 Move to Predicates — Register

40 373635 333231 2423 2019 1312 6 5 0
[0 (s | me o | ek, [
4 1 3 1 8 4 7 7 6
Instruction Operands Opcode Ext()a(nson
3
mov pr =r,, masky7 0 3
C.3.6.2 Move to Predicates — Immediate 44
40 373635 3332 6 5 0
24 | 0 |3 x5 | imma7, N
4 1 3 27 6
Instruction Operands Opcode Extinson
3
mov pr.rot = immy, 0 2
C.3.6.3 Move from Predicates/IP
40 373635 3332 27 26 1312 6 5 0
125 | 0 | [x| x5 | n [N
4 1 3 6 14 7 6
. Ex ion
Instruction | Operands | Opcode tensio
X3 X6
r{=ip 30
‘ mov r = pr ‘ 0 0 33

C-24 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.3.7 GR/AR Moves (I-Unit)

The l-Unit GR/AR moveinstructions are encoded in major opcode 0. (some ARs are accessed using system/memory man-

agement instructions on the M-unit. See “GR/AR Moves (M-Unit)” on page C-42.) See “Miscellaneous I-Unit Instruc-

tions” on page C-23 for a summary of the I-Unit GR/AR opcode extensions.

C3.7.1 Move to AR — Register (I-Unit)
40 373635 3332 27 26 2019 1312
BT ™ R A
4 1 3 6 7 7 7
Instruction | Operands | Opcode Extension
X3 Xg
mov.i arz=r, 0 0 2A
C.3.7.2 Move to AR — Immediate g (I-Unit)
40 373635 3332 2726 2019 1312
127 ’ 0 ’s’ X3 ’ Xg ’ arg immyzy,
4 1 3 6 7 7 7
Instruction | Operands | Opcode Extension
X3 Xg
mov.i arz =immg 0 0 OA
C.3.7.3 Move from AR (I-Unit)
40 373635 3332 2726 2019 1312
128 ‘ 0 Hx3‘ X6 arg r
4 1 3 6 7 7 7
Instruction | Operands | Opcode Extension
X3 X6
mov.i rp=arg 0 0 32
C.3.8 Sign/Zero Extend/Compute Zero Index
40 373635 3332 27 26 2019 1312
29 [0 [[x] % | 1 g
4 1 3 6 7 7 7
Instruction | Operands | Opcode Extension
X3 Xg
zxtl 10
ZXxt2 11
zxt4 12
sxtl 14
sxt2 _ 15
t4 f1=rs 0 0 | 16
czx1l 18
czx2l 19
czxlr 1C
czxX2.r 1D

HP/Intel |IA-64 Instruction Formats

C-25

IA-64 Application ISA Guide 1.0

C4a M-Unit Instruction Encodings

C41

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a 6-bit opcode extension field in bits
35:30 (Xg). Instructions in major opcode 4 (integer load/store, semaphores, and get FR) use two 1-bit opcode extension
fieldsin bit 36 (m) and bit 27 (x) as shown in Table C-26. Instructions in major opcode 6 (floating-point load/store, load
pair, and set FR) use two 1-bit opcode extension fields in bit 36 (m) and bit 27 (x) as shown in Table C-27.

Loads and Stores

Table C-26. Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions

Opcode m X
Bits40:37 | Bit36 | Bit27
0 0 Load/Store (Table C-28)
4 0 1 Semaphore/get FR (Table C-31)
1 0 Load +Reg (Table C-29)
1 1
Table C-27. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions
Opcode m X
Bits40:37 | Bit36 | Bit27
0 0 FP Load/Store (Table C-32)
6 0 1 FP Load Pair/set FR (Table C-35)
1 0 FP Load +Reg (Table C-33)
1 1 FP Load Pair +Imm (Table C-36)

The integer load/store opcode extensions are summarized in Table C-28 on page C-26, Table C-29 on page C-27, and
Table C-30 on page C-27, and the semaphore and get FR opcode extensions in Table C-31 on page C-28. The floating-
point load/store opcode extensions are summarized in Table C-32 on page C-28, Table C-33 on page C-29, and
Table C-34 on page C-29, the floating-point load pair and set FR opcode extensions in Table C-35 on page C-30 and
Table C-36 on page C-30.

Table C-28. Integer Load/Store Opcode Extensions

Opcode | m | x Xg
Bits Bit | Bit | Bits Bits 31:30
40:37 36 | 27 | 35:32 0 1 2 3

0 [dI1 M1 [d2M1 [d4 M1 [dB M1
1 l[dl.sM1 l[d2.sM1 l[d4.sM1 [d8.sM1
2 ldl.aM1 ld2.aM1 ld4.aM1 ld8.aM1
3 ldl.saM1 ld2.saM1 ld4.saM1 ld8.saM1
4 Idl.biasM1 ld2.biasM1 ld4.biasM 1 |d8.biasM 1
5 |dl.acqg M1 |d2.acqg M1 |d4.acqg M1 |d8.acq M1
6 Id8.fill M1

4 ol o/
8 ldl.c.clr M1 ld2.c.clr M1 ld4.c.clr M1 d8.c.clr M1
9 ldl.c.nc M1 ld2.c.nc M1 ld4.c.nc M1 |d8.c.nc M1
A Idl.c.clracgM1 | Id2.c.clracqM1 | ld4.c.clracgM1 | |d8.c.clr.acg M1
B
C st1 M4 st2 M4 st4 M4 st8 M4
D stl.rel M4 st2.rel M4 st4.rel M4 st8.rel M4
F

C-26

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

Table C-29. Integer Load +Reg Opcode Extensions

Id1.c.clr M3

ld2.c.clr M3

ld4.c.clr M3

Opcode | m | x Xg
Bits Bit | Bit | Bits Bits31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 Id1 M2 Id2 M2 Id4 M2 1d8 M2
1 Id1.sM2 d2.sM2 Id4.sM2 [d8.sM2
2 [dl.aM2 [d2.aM2 [d4.aM2 [d8.aM2
3 ldl.saM2 [d2.sa M2 Id4.sa M2 [d8.saM2
4 Id1.bias M2 Id2.bias M2 Id4.bias M2 Id8.bias M2
5 Id1l.acq M2 Id2.acq M2 |d4.acq M2 |d8.acq M2
6 [d8.fill M2
4 |1 01

8 Idl.c.clr M2 [d2.c.clr M2 Id4.c.clr M2 |d8.c.clr M2
9 |d1.c.nc M2 |d2.c.nc M2 Id4.c.nc M2 [d8.c.nc M2
A Idl.c.clracgM2 | Id2.c.clracqM2 | ld4.c.clr.acg M2 | |d8.c.clr.acq M2
B
C
D
E
F

Table C-30. Integer Load/Store +Imm Opcode Extensions

Opcode Xg
Bits Bits Bits31:30
40:37 | 35:32 0 1 2 3

0 Id1 M3 [d2 M3 [d4 M3 [d8 M3

1 [d1.sM3 [d2.sM3 [d4.sM3 1d8.sM3

2 Idl.aM3 Id2.aM3 ld4.aM3 |d8.aM3

3 ldl.saM3 |d2.saM3 |d4.saM3 |d8.saM3

4 Id1.bias M3 |d2.bias M3 |d4.biasM3 Id8.bias M3

5 Idl.acqg M3 Id2.acq M3 Id4.acq M3 [d8.acq M3

7

|d8.c.clr M3

Idl.c.nc M3

Id2.c.nc M3

Id4.c.nc M3

|d8.c.nc M3

W > ©| ©

Idl.c.clr.acg M3

st1 M5

Id2.c.clr.acq M3

st2 M5

|d4.c.clr.acq M3

st4 M5

Id8.c.clr.acq M3

st8 M5

m o O

stl.rel M5

8.5pill M5

[=

st2.rel M5

st4.rel M5

st8.rel M5

HP/Intel

IA-64 Instruction Formats

C-27

IA-64 Application ISA Guide 1.0

Table C-31. Semaphore/Get FR Opcode Extensions

Opcode | m | x Xg
Bits Bit | Bit | Bits Bits31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 cmpxchgl.acq M16 | cmpxchg2.acq M16 | cmpxchgd.acqg M16 | cmpxchg8.acq M16
1 cmpxchgl.rel M16 | cmpxchg2.rel M16 | cmpxchgd.rel M16 | cmpxchg8.rel M16
2 xchgl M16 xchg2 M16 xchgd M16 xchg8 M 16
3
4 acq fetchadd8.acq M17
5 fetchadd4.rel M17 | fetchadd8.rel M17
6
4 o 1 7 | gefSgM19 | gafepM19 | gafsM19 gafdM19
8
9
A
B
C
D
E
F
Table C-32. Floating-point Load/Store/Lfetch Opcode Extensions
Opcode | m | x Xg
Bits Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 Idfe M6 Idf8 M6 IdfsM6 Idfd M6
1 |dfesM6 Idf8.s M6 Idfs.sM6 Idfd.sM6
2 IdfeaM6 |df8.aM6 Idfs.aM6 Idfd.aM6
3 Idfe.saM6 |df8.saM6 |dfs.saM6 Idfd.sa M6
4 | |
5 | _ |
6 _ldifillME
6 0 0 ! . .
8 dfe.c.clr M6 df8.c.clr M6 dfs.c.clr M6 dfd.c.clr M6
9 Idfe.c.nc M6 Idf8.c.nc M6 Idfs.c.nc M6 Idfd.c.nc M6
A
B IfetchM13 | Ifetch.excl M13 | Ifetch.fault M13 | Ifetch.fault.excl M13
C stfe M9 stf8 M9 stfsM9 stfd M9
D
E L sfsillMe
F B .,

C-28

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

Table C-33. Floating-point Load/Lfetch +Reg Opcode Extensions

Opcode | m | x Xg
Bits Bit | Bit | Bits Bits31:30
40:37 36 | 27 | 35:32 0 1 2 3

0 [dfe M7 Idf8 M7 IdfsM7 [dfd M7
1 |dfe.sM7 Idf8.sM7 Idfs.sM7 Idfd.sM7
2 Idfe.aM7 [df8.aM7 [dfsaM7 [dfd.aM7
3 |dfe.saM7 |df8.saM7 |dfs.saM7 |dfd.saM7
4
: | | |
= mmiaiasw

6 1| 0 L f BEESRE -
8 Idfe.c.clr M7 |df8.c.clr M7 |dfs.c.clr M7 |dfd.c.clr M7
9 |dfe.c.nc M7 |df8.c.nc M7 |dfs.c.nc M7 |dfd.c.nc M7
A
A |
C
D
E

Table C-34. Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Opcode Xg
Bits Bits Bits 31:30
40:37 | 35:32 0 1 2 3
0 Idfe M8 [df8 M8 IdfsM8 Idfd M8
1 |dfe.sM8 |df8.s M8 |dfs.sM8 |dfd.sM8
2 |dfe.aM8 |df8.aM8 |dfs.aM8 |dfd.aM8
3 |dfe.saM8 |df8.saM8 |dfs.saM8 |dfd.saM8
4
5
6
7 7 N S —

8 |dfe.c.clr M8 |df8.c.clr M8 Idfs.c.clr M8 |dfd.c.clr M8
9 Idfe.c.nc M8 |df8.c.nc M8 Idfs.c.nc M8 Idfd.c.nc M8
A
B Ifetch M 15 Ifetch.excl M15 | Ifetch.fault M15 | Ifetch.fault.excl M15
C stfeM10 stf8 M10 stfsM10 stfdM10
D
- @

HP/Intel |IA-64 Instruction Formats C-29

IA-64 Application ISA Guide 1.0

Table C-35. Floating-point Load Pair/Set FR Opcode Extensions

Opcode | m | x Xg
Bits Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 1 2 3
Idfp8 M11 [dfps M11 Idfpd M11
|dfp8.s M 11 |dfps.s M11 |dfpd.sM11

Idfp8.aM11 [dfps.aM11 Idfpd.aM11
|dfp8.saM11 |dfpd.saM11

6 0 1 setf.sig M18 setf.exp M18

setf.s M 18 setf.d M18
[dfp8.c.clr M11 | Idfps.c.clr M11 | Idfpd.c.clr M11
|dfp8.c.nc M11 | Idfps.c.nc M11 | Idfpd.c.nc M11

Table C-36. Floating-point Load Pair +Imm Opcode Extensions

Opcode | m | x Xg
Bits Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 1 2 3
[dfp8 M12 [dfps M12 [dfpd M12
|dfp8.s M 12 |dfps.s M12 Idfpd.sM12
|dfp8.aM12 IdfpsaM12 |dfpd.aM12
|dfp8.saM12 Idfps.saM12 |dfpd.saM12

p8.c.clr M12 ps.c.clr M12

! c.clr M12
Idfp8.c.nc M12 | Idfps.c.nc M12

Idfpd..c'.nc M12

The load and store instructions all have a 2-bit opcode extension field in bits 29:28 (hint) which encodes locality hint
information. Table C-37and Table C-38 summari ze these assignments.

Table C-37. Load Hint Completer

Hint .
Bits 20:28 Idhint
0
1
2
3
Table C-38. Store Hint Completer
Hint .
Bits 29:28 sthint
0 [roneR
1
2
3 e

C-30 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C411

Integer Load

40 373635 3029282726 2019 1312 6 5
M1 4 m xe [illx] n [INEE
4 1 6 2 1 7 7 6
Instruction Operands | Opcode Extension .

X Xg hint

[d1.Idhint 00
Id2.Idhint 01
Id4.Idhint 02
[d8.Idhint 03
[d1.s.Idhint 04
[d2.s.Idhint 05
[d4.s.Idhint 06
[d8.s.Idhint 07
[d1.aldhint 08
Id2.aldhint 09
Id4.aldhint 0A
Id8.a.ldhint 0B
[d1.saldhint 0oC
Id2.saldhint oD
Id4.saldhint OE
Id8.sa.ldhint OF

42 biasldrint w5
ddbiasidhint | ry=[rs] 4 0 | 1 | TAleCH
|d8.bias.Idhint 13 on
[d1.acq.Idhint 14 | PageC-30
1d2.acq.ldhint 15
Id4.acq.ldhint 16
1d8.acq.ldhint 17
[d8.fill.Idhint 1B
[d1.c.clr.Idhint 20
Id2.c.clr.Idhint 21
Id4.c.clr.Idhint 22
Id8.c.clr.Idhint 23
Id1.c.nc.ldhint 24
Id2.c.nc.ldhint 25
Id4.c.nc.ldhint 26
1d8.c.nc.ldhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acqg.ldhint 2A
Id8.c.clr.acqg.ldhint 2B

HP/Intel

IA-64 Instruction Formats

C-31

IA-64 Application ISA Guide 1.0

Cc.4.1.2 Integer Load — Increment by Register

40 373635 3029282726 2019 1312 6 5 0
M2 [4 % G n [INEE
4 1 6 2 1 7 7 7 6
Instruction Operands | Opcode Extension .

m X Xg hint

[d1.Idhint 00
[d2.Idhint 01
[d4.Idhint 02
[d8.Idhint 03
[d1.s.Idhint 04
[d2.s.Idhint 05
[d4.s.Idhint 06
[d8.s.Idhint 07
[d1.aldhint 08
[d2.aldhint 09
[d4.aldhint 0A
[d8.aldhint 0B
[d1.saldhint oC
|d2.saldhint oD
Id4.saldhint OE
[d8.saldhint OF
[d1.bias.Idhint 10 See
[d2.bias.Idhint 1| tpec3y
|d4.bias.Idhint ro=[rsl, ro 4 1 0 12
|d8.bias.Idhint 13 on
[dL.acq.Idhint 14 | PageC-30
Id2.acq.ldhint 15
Id4.acq.ldhint 16
Id8.acq.ldhint 17
[d8.fill.Idhint 1B
[d1.c.clr.Idhint 20
[d2.c.clr.ldhint 21
[d4.c.clr.|dhint 22
[d8.c.clr.Idhint 23
[d1.c.nc.Idhint 24
[d2.c.nc.Idhint 25
[d4.c.nc.Idhint 26
[d8.c.nc.Idhint 27
Id1.c.clr.acq.Idhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acq.ldhint 2A
[d8.c.clr.acqg.ldhint 2B

C-32 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.1.3 Integer Load — Increment by Immediate
40 373635 3029282726 2019 1312 6 5
4 1 6 2 1 7 7 7
Instruction Operands Opcode Extenspn
Xg hint
[d1.Idhint 00
[d2.Idhint 01
Id4.1dhint 02
[d8.Idhint 03
Id1.s.Idhint 04
Id2.s.Idhint 05
Id4.s.Idhint 06
Id8.s.Idhint 07
[d1.aldhint 08
Id2.a.ldhint 09
Id4.a.ldhint 0A
Id8.a.ldhint 0B
Id1.saldhint oC
|d2.saldhint oD
|d4.saldhint OE
Id8.sa.ldhint OF
[d1.bias.Idhint 10 See
|d2.bias.|dhint 11| Taplec-37
Id4.bias.|dhint rq=[ral, immg 5 12
1
d8.bias.Idhint 13 on
IdL.acq.Idhint 14 | PageC-30
Id2.acq.ldhint 15
Id4.acq.ldhint 16
Id8.acq.ldhint 17
[d8.fill.Idhint 1B
[d1.c.clr.Idhint 20
[d2.c.clr.ldhint 21
[d4.c.clr.Idhint 22
[d8.c.clr.Idhint 23
[d1.c.nc.ldhint 24
[d2.c.nc.ldhint 25
[d4.c.nc.ldhint 26
[d8.c.nc.ldhint 27
Id1.c.clr.acq.ldhint 28
Id2.c.clr.acq.ldhint 29
Id4.c.clr.acq.ldhint 2A
[d8.c.clr.acg.ldhint 2B
C4.1.4 Integer Store
40 373635 3029282726 2019 1312 6 5
we |4 om o x [EIE - e
4 1 6 2 1 7 7 7
Instruction | Operands | Opcode Extension .
m X Xg hint
st1.sthint 30
st2.sthint 31
st4.sthint 32 See
st8.sthint 33
SLrelShint | [rg] =15 4 0 | o [34| ralec3®
st2.rel.sthint 35 on
std.rel.sthint 36 | PageC-30
st8.rel.sthint 37
st8.spill.sthint 3B
HP/Intel 1A-64 Instruction Formats C-33

IA-64 Application ISA Guide 1.0

C.4.15 Integer Store — Increment by Immediate
40 373635 3029282726 2019 1312 6 5 0
ws |5 [s o bt N . v (G
4 1 6 2 1 7 7 7 6
Instruction Operands Opcode Extensgn
Xg hint
st1.sthint 30
st2.sthint 31
st4.sthint 32 See
st8.sthint 33
slrel.sthint | [rg] =ry, immgy 5 34 1apIec-38
st2.rel.sthint 35 on
st.rel.sthint 36 | PageC-30
st8.rel.sthint 37
st8.spill.sthint 3B
C.4.1.6 Floating-point Load
40 3736 35 30292827 26 2019 1312 6 5 0
e [6 m X% b [e
4 1 6 2 1 7 7 7 6
Instruction Operands | Opcode Extension .
m X Xg hint
[dfs.Idhint 02
Idfd.ldhint 03
|df8.1dhint 01
Idfe.ldhint 00
Idfs.s.Idhint 06
Idfd.s.Idhint 07
|df8.s.Idhint 05
|dfe.s.|dhint 04
|dfs.aldhint 0A
Idfd.aldhint 0B
Idf8.a.ldhint 09 See
Idfe.aldhint 08
ldfssaldhint | f,=[ra) 6 0 | o |[og | loleCs
|dfd.saldhint OF on
|df8.saldhint op | PageC-30
Idfe.saldhint ocC
[df fill.Idhint 1B
Idfs.c.clr.Idhint 22
|dfd.c.clr.ldhint 23
|df8.c.clr.ldhint 21
Idfe.c.clr.Idhint 20
Idfs.c.nc.Idhint 26
|dfd.c.nc.Idhint 27
|df8.c.nc.Idhint 25
Idfe.c.nc.ldhint 24

C-34 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.1.7 Floating-point Load — Increment by Register
40 373635 3029282726 2019 1312 6 5
wr e m % RN

4 1 6 2 1 7 7 6
Instruction Operands | Opcode Extension .

m X Xg hint
[dfs.[dhint 02
[dfd.Idhint 03
[df8.1dhint 01
Idfe.ldhint 00
[dfs.s.Idhint 06
[dfd.s.|dhint 07
[df8.s.Idhint 05
Idfe.s.Idhint 04
[dfs.aldhint 0A
|dfd.aldhint 0B
|df8.a.ldhint 09 See
|dfe.aldhint 08
dfssaldhint | f,=[rd,r, = 6 1 0 [0 | ralecs
|dfd.saldhint OF on
|df8.saldhint op | PageC-30
|dfe.sa.ldhint oC
[df fill.Idhint 1B
|dfs.c.clr.ldhint 22
|dfd.c.clr.ldhint 23
|df8.c.clr.ldhint 21
|dfe.c.clr.ldhint 20
|dfs.c.nc.ldhint 26
|dfd.c.nc.Idhint 27
|df8.c.nc.Idhint 25
|dfe.c.nc.Idhint 24

HP/Intel 1A-64 Instruction Formats C-35

IA-64 Application ISA Guide 1.0

Cc.4.1.8 Floating-point Load — Increment by Immediate

40 373635 3029282726 2019 1312 6 5 0
wo |7 [s o it I |
4 1 6 2 1 7 7 7 6
Instruction Operands Opcode Extenspn
Xg hint
[dfs.Idhint 02
|dfd.ldhint 03
|df8.Idhint 01
Idfe.ldhint 00
Idfs.s.Idhint 06
|dfd.s.Idhint 07
|df8.s.Idhint 05
Idfe.s.Idhint 04
Idfs.aldhint 0A
|dfd.a.ldhint 0B
|df8.a.ldhint 09 See
|dfe.aldhint 08
dfssaldhint | f,=[rg,immg | 7 | OE | |0IeC37
|dfd.saldhint OF on
|df8.saldhint op | PageC-30
|dfe.sa.ldhint oC
[df fill.Idhint 1B
Idfs.c.clr.ldhint 22
|dfd.c.clr.ldhint 23
|df8.c.clr.ldhint 21
Idfe.c.clr.ldhint 20
Idfs.c.nc.ldhint 26
|dfd.c.nc.ldhint 27
|df8.c.nc.ldhint 25
|dfe.c.nc.Idhint 24

C.4.19 Floating-point Store

40 373635 3029282726 2019 1312 65 0
wo o m % X I 6 e
4 1 6 201 7 7 7 6
Instruction Operands | Opcode Extension .

m X Xg hint
stfs.sthint 32
stfd.sthint 33 See
stf8.sthint [ra] =15 6 0 0 31 Table C-38
stfe.sthint 30 | onpageC-30
stf.spill.sthint 3B
C.4.1.10 Floating-point Store — Increment by Immediate
40 373635 3029282726 2019 1312 6 5 0
wo 7 (s o bt N . o
4 1 6 2 1 7 7 7 6
Instruction Operands Opcode Extensgn
Xg hint
stfs.sthint 32
stfd.sthint 33 See
stf8.sthint [ra] =f,, immg 7 31 Table C-38
stfe.sthint 30 | onpageC-30
stf.spill.sthint 3B

C-36 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.1.11 Floating-point Load Pair
40 373635 3029282726 2019 1312 6 5
wi oo xRN R
4 1 6 2 1 7 7 7 6
Instruction Operands | Opcode Extension .
m X Xg hint
Idfps.Idhint 02
Idfpd.Idhint 03
|dfp8.Idhint 01
[dfps.s.Idhint 06
Idfpd.s.Idhint 07
|dfp8.s.Idhint 05
Idfps.a.ldhint 0A
Idfpd.aldhint 0B See
Idfp8.a.ldhint _ 09 | TableC-37
dfpssaldhint | ‘v f2=Mal | 6 0 1 o on
Idfpd.saldhint OF page C-30
|dfp8.sa.ldhint 0D
Idfps.c.clr.ldhint 22
Idfpd.c.clr.Idhint 23
Idfp8.c.clr.Idhint 21
Idfps.c.nc.Idhint 26
Idfpd.c.nc.ldhint 27
|dfp8.c.nc.ldhint 25
C.4.1.12 Floating-point Load Pair — Increment by Immediate
40 373635 3029282726 2019 1312 6 5
w2 |6 AT
4 1 6 1 7 7 7 6
Instruction Operands Opcode Extension .
m X Xg hint
[dfps.Idhint f, fo=1[rq], 8 02
Idfpd.Idhint _ 03
Idfps.Idhint f. f2=[rg], 16 01
Idfps.s.Idhint fi,fo=1[rsl, 8 06
Idfpd.s.Idhint _ 07
dfp8.sidnint | '+ f2= (sl 16 05
Idfps.aldhint f, fo=1[rql, 8 0A
Idfpd.aldhint f1.f,= 4], 16 0B See
Idfp8.aldhint Liz2=lsh 6 1 1 09 | TableC-37
[df ps.saldhint f,f,=1[rg], 8 OE on
|dfpd.sa.ldhint _ OF page C-30
dfp8.saldhint | '+ f2= sl 16 0D
Idfps.c.clrldhint | fi, f, =[r3], 8 22
Idfpd.c.clr.Idhint _ 23
Idfps.c.dridhint | 1 f2=[al, 16 2
Idfps.c.nc.Idhint | 1, f,=[r3], 8 26
Idfpd.c.nc.ldhint _ 27
Idfp8.c.ncidhint | '+ f2= [l 16 25
HP/Intel IA-64 Instruction Formats C-37

IA-64 Application ISA Guide 1.0

C4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the floating-point load/store instructions.
See “Loads and Stores” on page C-26 for a summary of the opcode extensions.

The line prefetch instructions all have a 2-bit opcode extension field in bits 29:28 (hint) which encodes locality hint infor-

mation as shown in Table C-39.
Table C-39. Line Prefetch Hint Completer

Hint
Bits 29:28

Ifhint

C4.2.1 Line Prefetch
40 373635 3029282726 2019

s 60 %

4 1 6 21 7 14 6
Instruction Operands | Opcode Extension .
m X Xg hint
Ifetch.Ifhint 2C See
Ifetch.excl.Ifhint 2D
Ifetch.faultIfhint [r3] 6 0 1 0 | 5 Tab'ecé3§8°”
Ifetch.fault.excl.Ifhint 2F page -
Cc.4.2.2 Line Prefetch — Increment by Register
40 373635 30292827 26 2019 1312 6 5
wia |6 m : e
4 1 6 201 7 7 7 6
Instruction Operands | Opcode Extension -
m X Xg hint
Ifetch.Ifhint 2C See
Ifetch.excl.Ifhint 2D
Ifetch fault Ifhint [ral. T2 6 110 % Tab'ecfgg"”
Ifetch.fault.excl.Ifhint 2F page -
c.4.23 Line Prefetch — Increment by Immediate
40 373635 30292827 26 2019 1312 6 5
wis |7 s x it [e
1 7 7 6
Instruction Operands | Opcode Extensgn
Xg hint
[fetch.Ifhint 2C See
Ifetch.excl.Ifhint . 2D
Ifetch fault Ifhint [ral, immg | 7 2E Tab'ecg'gg"”
Ifetch.fault.excl.Ifhint 2F page L-

C-38 |A-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

C.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer load/store instructions. See “Loads and
Stores” on page C-26 for a summary of the opcode extensions.

C.4.31 Exchange/Compare and Exchange

40 373635 3029282726 2019 1312 6 5 0
M [4 Jml X " n [REEE
4 1 6 1 7 7 7 6
Instruction Operands Opcode Extension .
m X Xg hint
cmpxchgl.acddhint 00
cmpxchg2.acddhint 01
cmpxchg4.acddhint 02
cmpxchg8.acddhint _ 03
cmpxchgZLreldhint | 17 [ral, rz, ar.cev 04 See
cmpxchg2.reldhint 4 0 1 05 | Table C-37
cmpxchg4.reldhint 06 on
cmpxchg8.reldhint 07 | page C-30
xchglldhint 08
xchg2ldhint _ 09
xchgaldhint r1=[rg 12 0A
xchg8ldhint 0B
C.4.32 Fetch and Add — Immediate
40 373635 3029282726 2019 1615141312 6 5 0
17 [4 Jml e sl n GRS
4 1 6 1 4 1 2 7 6
Instruction Operands | Opcode Extension .

m X Xg hint
fetchadd4.actdhint 12 See
fetchadd8.actphint _ ; 13)
fetchadd4.reldring | "1~ ['ah incs | 4 0 b e Teble s
fetchadds.reldhint 17 | Onhpaget-

C4d.4 Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point load/store instructions. The get FR
instructions are encoded in major opcode 4 along with the integer load/store instructions. See “Loads and Stores” on
page C-26 for a summary of the opcode extensions.

C4.4.1 Set FR

40 373635 3029 28 27 26 2019 1312 6 5 0
MlB‘ 6 ‘m‘ Xg ’ ‘X’ I f, !
4 1 6 2 1 7 = : -
Instruction | Operands | Opcode Extension

m X XG

setf.sig e

setf.exp B 1D

setf.s fi=r 6 o 1| 1P

setf.d 1F

HP/Intel |IA-64 Instruction Formats C-39

IA-64 Application ISA Guide 1.0

C4.4.2

C4.5

Get FR
40 3736 35 3029 28 27 26 2019 1312 6 5 0
o [e AR
4 1 6 2 1 7 7 = 5
Instruction | Operands | Opcode Extension
m X Xg
getf.sig e
getf.exp _ 1D
getf.s =% 4 0o | 1| 1P
getf.d 1F

Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0 and 1 along with the system/mem-

ory management instructions. See “Memory Management” on page C-43 for a summary of the opcode extensions.

C451

C.4.52

C.453

C.4.54

Integer Speculation Check (M-Unit)

40 373635 3332 2019 1312 6 5 0
wo | 1 lsiw | mme | o [
4 1 13 7 7 6
Instruction | Operands | Opcode Extinson
3
chk.s.m ro, targetos 1 1
Floating-point Speculation Check
40 373635 3332 2019 1312 6 5 0
I S R o e |G
4 1 3 13 7 7 6
Instruction | Operands | Opcode Extinson
3
chk.s f2, targetz5 1 3
Integer Advanced Load Check
40 373635 3332 1312 6 5 0
M2z [0 s % | immygs no [ee
4 1 3 20 7 6
Instruction | Operands | Opcode Extinson
3
chk.a.nc 4
chk.a.clr 1, targetzs 0 5
Floating-point Advanced Load Check
40 373635 3332 1312 6 5 0
wes [0 15 % | oo e
4 1 3 20 7 6
Instruction | Operands | Opcode Extinson
3
chk.a.nc 6
chk.a.clr 1, targetys 0 7

C-40

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

C4.6

Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along with the memory management
instructions. See “Memory Management” on page C-43 for a summary of the opcode extensions.

C46.1

C.4.6.2

C.4.6.3

C.4.6.4

C.4.6.5

Sync/Fence/Serialize/ALAT Control
40 373635 33323130 27 26

M4 | 0 [x x| x4 |
4 1 3 2 4

21 6
Instruction | Opcode Extension
X3 Xq Xo
invala 0 1
mf 2 >
mf.a 0 0 3
srlz.i 1 3
sync.i 3
RSE Control
40 373635 33323130 2726 65 0
m2s |0 | [xs Pl x| o
4 1 3 2 4 21 6
Instruction | Opcode Extension
. X3 X4 X2
flushrs' 0 0 C 0
Integer ALAT Entry Invalidate
40 373635 33323130 27 26 1312 6 5 0
vz | 0 | [xs Pl x| no [ae
4 1 3 2 4 14 7 6
Instruction | Operands | Opcode Extension
X3 X4 Xo
invala.e [y 0 0 2 1
Floating-point ALAT Entry Invalidate
40 373635 33323130 2726 1312 6 5 0
mzz [0 | [Pl] i [ae
4 1 3 2 4 14 7 6
Instruction | Operands | Opcode Extension
X3 X4 Xo
invala.e f1 0 0 3 1
Flush Cache
40 373635 3332 2726 2019 6 5 0
w2 |1] [ke [B
4 1 3 6 7 14 6
Instruction | Operands | Opcode Extension
X3 Xg
fc rs 1 0 30

HP/Intel

IA-64 Instruction Formats

C-41

IA-64 Application ISA Guide 1.0

c.4.7 GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in mgor opcode 0 aong with the system/memory management
instructions. (some ARs are accessed using system control instructions on the I-unit. See “GR/AR Moves (I-Unit)” on
page C-25.) See “Memory Management” on page C-43 for a summary of the M-Unit GR/AR opcode extensions.

C4.7.1 Move to AR — Register (M-Unit)
40 373635 3332 27 26 2019 1312 6
Mo | 1 [x| x | ag r
4 1 3 6 7 7 7
Instruction | Operands | Opcode Extension
X3 X6
mov.m arz=r, 1 0 2A
Cc.4.7.2 Move to AR — Immediate g (M-Unit)
40 373635 33323130 2726 2019 1312 6
M30’ 0 ’s’ X3 ’x2’ X4 ’ ars immyzy,
4 1 3 2 4 7 7 7
Instruction | Operands | Opcode Extension
X3 X4 Xo
mov.m arg =immg 0 0 8 2
C.4.73 Move from AR (M-Unit)
40 373635 3332 27 26 2019 1312 6
M31 ‘ 1 ’ ‘ X3 ‘ XG ‘ ar3 rl
4 1 3 6 7 7 7
Instruction | Operands | Opcode Extension
X3 Xg
mov.m rp=arg 1 0 22
C.4.8 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the memory management instructions.
See “Memory Management” on page C-43 for a summary of the opcode extensions.

c.48.1 Allocate Register Stack Frame

40 373635 33323130 2726 2019 1312 6
M34 ’ 1 ’ ’ X3 ’ sor ’ sol sof r
4 1 3 2 4 7 7 7

. Extension
Instruction Operands Opcode x
. , 3
alloc' r, = ar.pfsj,l,o,r 1 6

NOTE: The three immediates in the instruction encoding are formed from the operands as follows:

sof=i+l+o0

sol =i +1

sor =r >>3

C.4.8.2 Move to PSR
40 373635 3332 27 26 2019 1312
M35 ‘ 1 ’ ‘ X3 ‘ X6 I
4 1 3 6 7 -
Instruction | Operands | Opcode |)E(Xtensgn
3 6

mov psr.um =, 1 0 29

C-42 |A-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

C.4.8.3 Move from PSR

40 373635 3332 2726 1312
M | 1 | [xa] X "1
4 1 3 6 14 7
Instruction | Operands | Opcode Extension
X3 Xg
mov r{ = psr.um 1 0 21
c.484 Break/Nop (M-Unit)
40 373635 33323130 272625
M37 ‘ 0 ‘l‘ X3 ‘Xz‘ X4 ’ ‘ imm20a
4 1 3 2 4 1 20
Instruction | Operands | Opcode Extension
X3 Xa X2
break.m . 0
nop.m immyq 0 0 1 0

C.4.9 Memory Management

All system/memory management instructions are encoded within major opcodes 0 and 1 using a 3-bit opcode extension
field (x3) in bits 35:33. Some instructions also have a 4-bit opcode extension field (x4) in bits 30:27, or a 6-hit opcode
extension field (xg) in bits 32:27. Most of the instructions having a4-bit opcode extension field also have a 2-bit extension
field (x,) in bits 32:31. Table C-40 shows the 3-bit assignments for opcode O, Table C-41 summarizes the 4-bit+2-bit
assignments for opcode 0, Table C-42 shows the 3-hit assignments for opcode 1, and Table C-43 summarizes the 6-bit

assignments for opcode 1.

Table C-40. Opcode 0 Memory Management 3-bit Opcode Extensions

System/Memory Management
4-bit+2-bit Ext (Table C-41)

chk.a.nc — int M22

chk.a.clr — int M22

chk.a.nc — fp M23

Opcode X3
Bits Bits
40:37 35:33

0
1
2
0 3
4
5
6
7

chk.a.clr — fp M23

HP/Intel |IA-64 Instruction Formats

C-43

IA-64 Application ISA Guide 1.0

Table C-41. Opcode 0 Memory Management 4-bit+2-bit Opcode Extensions

Opcode | X3 Xq X

Bits Bits Bits Bits 32:31

40:37 | 35:33 | 30:27 0 1
0 break.m M37 invalaM24
1 nopmM37 slziM24
2 invala.e — int M26
3 invala.e — fp M27 sync.i M24
4 sum M44
5 rum M44
6

0 0 @ .

8 ~ mov.m to ar — imM30 |
9
A |
B
Cflushrs M25
D
E

Table C-42. Opcode 1 Memory Management 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 Memory Management 6-bit Ex
(Table C-43)
1 chk.s.m — int M20
2
1 3 | chks—fpm2l

4
5
6 alloc M34

Table C-43. Opcode 1 Memory Management 6-bit Opcode Extensions

Opcode | X3 Xg
Bits Bits Bits Bits 32:31
40:37 : : 2

I A
mov from psr.um M36
mov.m from ar M31
|
mov from pmd M43

-
.

mov to psr.um M35
mov.m to ar M29

C-44 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.9.1 Move from Indirect Register

40 373635 3332 2726 2019 1312
mas [1] [| xRS g
4 1 3 6 7 7 7
Instruction Operands | Opcode ixtensgn
3 6
r1 = pmd[r] 15
mov r{ = cpuid[rs] L 0 17
C.4.9.2 Set/Reset User Mask
40 373635 33323130 2726
M4a4 ‘ 0 ‘l ‘ X3 ‘ iZd‘ X4 ‘ imlea
4 1 3 2 4 21
Instruction | Operands | Opcode Extension
X3 Xa
sum . 4
rum M4 0 0 5

C.5 B-Unit Instruction Encodings

The branch-unit includes branch and miscellaneous instructions.

C5.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative branch, and opcode 5 for IP-rela

tive call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode extension field in bits 8:6 (btype) to
distinguish the branch types as shown in Table C-44.

Table C-44. IP-Relative Branch Types

Opcode btype
Bits40:37 | bits8:6
0 br.cond B1
1
2 br.wexit B1
4 3 br.wtop B1
:%4
5 r.cloop B2
6 br.cexit B2
7 br.ctop B2

The indirect branch, indirect return, and miscellaneous branch-unit instructions are encoded within major opcode O using
a 6-bit opcode extension field in bits 32:27 (xg). Table C-45 summarizes these assignments.

HP/Intel |IA-64 Instruction Formats

C-45

IA-64 Application ISA Guide 1.0

Table C-45. Indirect/Miscellaneous Branch Opcode Extensions

Opcode
Bits
40:37

X6

Bits

Bits32:31

The indirect branch instructions encoded within major opcodes O use a 3-bit opcode extension field in bits 8:6 (btype) to
distinguish the branch types as shown in Table C-46.

Table C-46. Indirect Branch Types

Opcode Xg
Bits 40:37 Bits 32:27
0 20

The indirect return branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field in bits 8:6
(btype) to distinguish the branch types as shown in Table C-47.

Table C-47. Indirect Return Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits8:6
0
1
2
3
0 21 1
5
6
7

All of the branch instructions have a 1-bit opcode extension field, p, in bit 12 which provides a sequentia prefetch hint.
Table C-48 summarizes these assignments.

Table C-48. Sequential Prefetch Hint Completer

p

0
1

Bit 12

ph

C-46

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

The IP-relative and indirect branch instructions all have a 2-bit opcode extension field in bits 34:33 (wh) which encodes
branch prediction “whether” hint information as shown in Table C-49. Indirect call instructions have a 3-bit opcode exten-
sion field in bits 34:32 (wh) for “whether” hint information as shown in Table C-50.

Table C-49. Branch Whether Hint Completer

wh
Bits 34:33

Table C-50. Indirect Call Whether Hint Completer
wh
Bits 34:32 bwh
0
1
2
3
4
5
6
7

The branch instructions also have a 1-bit opcode extension field in bit 35 (d) which encodes a branch cache deallocation
hint as shown in Table C-51.

Table C-51. Branch Cache Deallocation Hint Completer

d
Bit 35 dn
0
1
Cb511 IP-Relative Branch
40 373635343332 131211 9 8 6 5 0
Bl ‘ 4 s immyy, ! ‘btyp!
4 11 2 20 1 3 3 6
. Extension
Instruction Operands | Opcode biype m wh d
br.condbwh.ph.dh 0 See See See
br.wexitbwh.ph.dh® | target,s 4 2 | Table C-480n| Table C-490n| Table C-510n
br.wtopbwh.ph.dht 3 page C-46 page C-47 page C-47
C.5.1.2 IP-Relative Counted Branch
40 373635343332 131211 9 8 6 5 0
B2 | 4 s immag, btype O
4 11 2 20 1 3 3 6
: Extension
Instruction L Operands | Opcode biype 0 wh d
br.cloopbwh.ph.dh* 5 See See See
br.cexitbwh.ph.dh® | target,s 4 6 | Table C-480n| Table C-490n| Table C-510n
br.ctopbwh.ph.dh'! 7 page C-46 page C-47 page C-47

HP/Intel

IA-64 Instruction Formats

C-47

IA-64 Application ISA Guide 1.0

C.5.13

Cb514

C.5.15

C5.2

IP-Relative Call
40 373635343332 131211 9 8 6 5 0
s | 5 s B o e
4 11 2 20 1 3 3 6
. Extension
Instruction Operands | Opcode 0 wh d
See See See
br.call.bwh.ph.dh | b, = target,s 5 Table C-480n | TableC-490n | Table C-510n
page C-46 page C-47 page C-47
Indirect Branch
40 373635343332 2726 1615 131211 9 8 6 5 0
o [0 R n B el
4 11 2 6 11 3 1 3 3 6
. Extension
Instruction Operands | Opcode X biype 0 wh d
See See See
br.cond.bwh.ph.dh 0
P 20 TebleC- | TableC- | TableC-
br.ia.bwh.ph.dh b, 0 1 48 on 49 on 51 on
e C-4 eC-4 eC-4
br.ret.bwh.ph.dh 21 4 Pag P P
6 7 7
Indirect Call
40 37363534 3231 1615 131211 9 8 6 5 0
o5 kB o
4 1 3 16 3 1 3 3 6
. Extension
Instruction Operands | Opcode m wh d
See See See
br.call.bwh.ph.dh | b; = b, 1 Table C-480on | TableC-500n | Table C-510n
page C-46 page C-47 page C-47

Nop

The nop instruction is encoded in major opcode 2. The nop instruction in major opcode 2 uses a 6-bit opcode extension
field in bits 32:27 (xg). Table C-52 summarizes these assignments.

Table C-52. Indirect Predict/Nop Opcode Extensions

Opcode Xg

Bits Bits Bits32:31

40:37 30:27 0 1 2 3
0 nop.b B9
1
2
3
4
5
6
7

2 8
9
A
B
C
D
E
F
C-48 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.53 Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded within major opcode 0 using a 6-bit
opcode extension field in bits 32:27 (Xg) as described in Table C-45 on page C-46.

C.531 Miscellaneous (B-Unit)
40 3736 3332 27 26 6 5 0
B8 | X I
4 4 6 21 6
. Extension
Instruction | Opcode <
. 6
clrrrb’ 0 04
clrrrb.pr! 05
C.5.3.2 Break/Nop (B-Unit)
40 373635 3332 272625 6 5 0
oo 0B | % e
4 1 3 6 1 20 6
Instruction | Operands | Opcode Exte):(nsnon
6
break.b . 0
nop.b MMy 2 00

C.6 F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 — E for floating-point and fixed-point arithmetic, opcode 4
for floating-point compare, opcode 5 for floating-point class, and opcodes 0 and 1 for miscellaneous floating-point
instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded within major opcodes 0 and 1
using a 1-bit opcode extension field (x) in bit 33 and either a second 1-bit extension field in bit 36 (q) or a 6-bit opcode
extension field (¥) in bits 32:27. Table C-53 shows the 1-bit x assignments, Table C-56 shows the additional 1-bit q
assignments for the reciprocal approximation instructions; Table C-54 and Table C-55 summarize theaBdignx

ments.

Table C-53. Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode X
Bits 40:37 Bit 33
0 0 6-bit Ext (Table C-54)
1 Reciprocal Approximation (Table C-56
1 0 6-bit Ext (Table C-55)
1 Reciprocal Approximation (Table C-56

HP/Intel |IA-64 Instruction Formats C-49

IA-64 Application ISA Guide 1.0

Table C-54. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode | x Xg
Bits Bit | Bits Bits 32:31
40:37 | 33
0 0

Table C-55. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode | x X6
Bits Bit | Bits Bits 32:31
40:37 | 33
1 0

Table C-56. Reciprocal Approximation 1-bit Opcode Extensions

Opcode B)Et Egt
Bits 40:37 23
0
1
1

C-50

IA-64 Instruction Formats

HP/Intel

IA-64 Application ISA Guide 1.0

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf) which encodes the FPSR status field
to be used. Table C-57 summarizes these assignments.

Table C-57. Floating-point Status Field Completer

sf

Bits 35:34 s
0 .sO
1 sl
2 .82
3 .s3

C.6.1 Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 — D using a 1-bit opcode extension field (x)
in bit 36 and a 2-bit opcode extension field (sf) in bits 35:34. The opcode and x assignments are shown in Table C-58.

Table C-58. Floating-point Arithmetic 1-bit Opcode Extensions

X Opcode
. Bits 40:37
Bit 36 8 9 A B C D
0 fma F1 fma.d F1 fms F1 fms.dF1 | fnrmaF1 | fnma.d F1
1 fma.sF1l | fpmaFl | fms.sF1 | fpmsF1l | fnma.s F1| fpnma F1

The fixed-point arithmetic and parallel floating-point select instructions are encoded within major opcode E using a 1-bit
opcode extension field (x) in bit 36. The fixed-point arithmetic instructions also have a 2-bit opcode extensiay) iireld (x
bits 35:34. These assignments are shown in Table C-59.

Table C-59. Fixed-point Multiply Add and Select Opcode Extensions

Opcode | x Xo
Bits Bit Bits 35:34
40:37 | 36 0 \ 1 | 2 \ 3
E 0 fselect F3
1 [xmalF2 [| xmahuF2[xma.hF2

Cc6.1.1 Floating-point Multiply Add

40 3736353433 27 26 2019 1312 6 5 0
o leos G | G| f | e
4 1 2 7 7 7 7 6
Instruction | Operands | Opcode x Extenszp
fmasf 8 0
fma.ssf 1
fma.dsf 9 0
fpmasf 1
fmssf A 0 See
fms.ssf fo=fa £, f 1 Table C-57
fms.dsf 1773 4 72 B 0 on
fomssf 1 page C-51
fnmasf C 0
fnma.ssf 1
fnma.dsf D 0
fpnmasf 1

HP/Intel |IA-64 Instruction Formats C-51

IA-64 Application ISA Guide 1.0

C.6.1.2 Fixed-point Multiply Add

40 3736353433 2726 2019 1312 6 5 0
2 [E M |6 [
4 1 2 7 7 7 7 6
Instruction | Operands | Opcode Exxtensgn
2
xmal 0
xmah fl = f3, f4, fz E 1 3
xmahu 2
C.6.2 Parallel Floating-point Select
40 3736353433 2726 2019 1312 6 5 0
e [EW | e [f f2 b [e
4 1 2 7 7 7 7 6
Instruction Operands Opcode Exte)r:son
fselect fl = f3, f4, fz E 0

C.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major opcode 4 using three 1-bit opcode
extension fieldsin bits 33 (rp), 36 (rp), and 12 (t,), and a 2-bit opcode extension field (sf) in bits 35:34. The opcode, r, rp,
and t, assignments are shown in Table C-60. The sf assignments are shown in Table C-57 on page C-51.

The parallel floating-point compare instructions are described on page C-54.

Table C-60. Floating-point Compare Opcode Extensions

Opcode | r, | rp ta
Bits Bit | Bit Bit 12
40:37 | 33 | 36 0 1
0 0 fcmp.eq F4 fcmp.eg.unc F4
4 1 femp.lt F4 femp.lt.unc F4
1 0 fcmp.le F4 fcmp.le.unc F4
1 fcmp.unord F4 femp.unord.unc F4

The floating-point class instructions are encoded within major opcode 5 using a 1-bit opcode extension field in bit 12 (t,)
as shown in Table C-61.

Table C-61. Floating-point Class 1-bit Opcode Extensions

Opcode ta
Bits 40:37 Bit 12
5 0 fclassm F5
1 fclass.m.unc F5

C.6.3.1 Floating-point Compare

40 373635343332 2726 2019 131211 6 5 0
Fo | 4 sl p fy nooW om e
4 1 2 1 6 7 7 1 o 5
I nstruction Operands | Opcode Extension
la My ta o
fecmp.eg.sf 0 0
femp.It.sf 1 0
fcmp.lesf 1 0 .
TS huphly | 4 L s
Pl 0 on page C-51
femp.It.unc.sf 1 . pag
fecmp.le.unc.sf N 0
femp.unord.unc.sf 1

C-52 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.6.3.2 Floating-point Class
40 373635343332 2726 2019 131211 6 5
sl s ol el mes | 6t e G
4 2 2 6 7 7 1 6
Instruction Operands Opcode Extetnson
a
fclassm _ 0
fclass.m.unc P1, P =T, fdlassy 5 1
co64 Approximation
C.6.4.1 Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes the full register variant. The sec-
ond, in mgjor op 1, encodes the parallel variant.

40 373635343332 2726 2019 1312 6 5
F6 ‘ 0-1 ‘q‘ sf ‘x‘ p, fa f, fy !
4 1 2 1 6 7 7 =
Instruction | Operands | Opcode qutensmn -
fropa.sf 0 SeeTable C-57
fpripasr T P2=fafs 1 1 0 on page C-51

C.6.4.2

Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op 0, encodes the full register vari-
ant. The second, in mgjor op 1, encodes the parallel variant.

40 373635343332 2726 2019 1312 6 5
7 (o R A
4 1 2 1 6 7 7 7
Instruction | Operands | Opcode Extension
X q sf
frsgrasf - 0 SeeTable C-57
P2~ ! ! n C-51
fprsgrta.sf 1 on page

HP/Intel

IA-64 Instruction Formats

C-53

IA-64 Application ISA Guide 1.0

C.6.5 Minimum/Maximum and Parallel Compare

There are 2 groups of Minimum/Maximum instructions. The first group, in major op 0, encodes the full register variants.
The second group, in major op 1, encodes the parallel variants. The parallel compare instructions are all encoded in major
op L

40 373635343332 27 26 2019 1312 6 5 0
o0 g e | G 6 |
4 1 2 1 6 7 7 7 6
Instruction Operands | Opcode Extension
X Xg sf
fmin.sf 14
fmax.sf 0 15
famin.sf 16
famax.sf 17
fpmin.sf 14
fpmax.sf 15
fpamin.sf 16 See
fpamax.sf f=f f 0 17 Table C-57
fpcmp.eq.sf 17273 30 on
fpcmp.It.sf 1 31 page C-51
fpcmp.le.sf 32
fpcmp.unord.sf 33
fpcmp.neg.sf 34
fpcmp.nlt.sf 35
fpcmp.nle.sf 36
fpcmp.ord.sf 37
C.6.6 Merge and Logical
40 3736 343332 27 26 2019 1312 6 5 0
oo % | |6 | h
4 3 1 6 7 7 7 6
Instruction | Operands | Opcode Ethensgz
fmerge.s 10
fmerge.ns 11
fmerge.se 12
fmix.Ir 39
fmix.r 3A
fmix.| 3B
fsxt.r 3C
fsxt.l 0 3D
fpack 28
fSNap fl = f2, f3 0 34
fswap.nl 35
fswap.nr 36
fand 2C
fandem 2D
for 2E
fxor 2F
fpmerge.s 10
fpmerge.ns 1 11
fpmerge.se 12

C-54 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.6.7 Conversion

C.6.7.1 Convert Floating-point to Fixed-point

40 373635343332 27 26 2019 1312 6 5 0
fo (051 [w6 o
4 1 2 1 6 7 7 7 6
Instruction Operands | Opcode Extension
X Xg sf
fevt.fx.of 18
fevt.fxu.sf 0 19
fovt.fx.trunc.sf 1A See
fevt.fxu.trunc.sf fo=f 0 1B Table C-57
fpevt.fx.sf 1=72 18 on
fpevt.fxu.sf 1 19 page C-51
fpevt.fx.trunc.sf 1A
fpevt.fxu.trunc.sf 1B
C.6.7.2 Convert Fixed-point to Floating-point
40 3736 343332 2726 2019 1312 6 5 0
e [0 W A
4 3 1 6 7 7 7 6
Instruction | Operands | Opcode Ethens)(zn
6
fovt.xf f1:f2 0 0 1C
C.6.8 Status Field Manipulation
c.6.8.1 Floating-point Set Controls
40 373635343332 2726 2019 1312 6 5 0
f2 [0 g x| oma, | anskg B
4 1 2 1 6 7 7 7 6
Instruction Operands Opcode Extension
X Xg sf
fsetc.sf amasky, omasky 0 0 | s SeeTAleCH
on page C-51
C.6.8.2 Floating-point Clear Flags
40 373635343332 2726 6 5 0
Fi3 | 0 | [sX X I
4 1 2 1 6 21 6
. Extension
Instruction | Opcode
X Xg sf
felrf.of 0 0 | o5 | SeelableCsy
on page C-51
C.6.8.3 Floating-point Check Flags
40 373635343332 272625 6 5 0
e [0 (s8] e
4 1 2 1 6 1 20 6
Instruction | Operands | Opcode XExtenS|on g
6
SeeTable C-57
fchkf.sf target,s 0 0 08 on page C-51

HP/Intel |IA-64 Instruction Formats C-55

IA-64 Application ISA Guide 1.0

C.6.9 Miscellaneous F-Unit Instructions
C.6.91 Break/Nop (F-Unit)
40 373635343332 272625 6 5 0
is [CJO0 il MG e
4 1 2 1 6 1 20 6
Instruction | Operands | Opcode Ethens)c:n
6
break.f . 00
nop.f MMy 0 0 01

C.7 X-Unit Instruction Encodings

The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode extensions and hints, gp, and small
immediate fields occupy the X instruction slot. For movl, break.x, and nop.x, the immy, field occupies the L instruction
sot.

C71 Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode O using a 3-bit opcode extension field (x3) in bits
35:33 and a 6-bit opcode extension field (xg) in bits 32:27. Table C-62 shows the 3-bit assignments and Table C-63 sum-
marizes the 6-bit assignments. These instructions are executed by an I-unit.

Table C-62. Misc X-Unit 3-bit Opcode Extensions

Opcode I';?s
Bits40:37 35:33
6-bit Ext (Table C-63)
0

Table C-63. Misc X-Unit 6-bit Opcode Extensions

OpCOde X3 X
Bits Bits Bits Bits 32:31
40:37 : : 0
break.x X1

C-56 |A-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Cc.7.11 Break/Nop (X-Unit)

40 373635 3332 272625 6 5 040 0
xi [0 [i%] e] |
4 1 3 6 1 20 6 41
. Extension
Instruction | Operands | Opcode
X3 X6
break.x . 00
nop.x IMMe2 0 0 01

C.7.2 Move Long Immediateg,

The move long immediate instruction is encoded within major opcode 6 using a 1-hit reserved opcode extension in bit 20
(ve) as shown in Table C-64. Thisinstruction is executed by an I-unit.

Table C-64. Move Long 1-bit Opcode Extensions

Opcode Ve
bits40:37 | bit 20
0 movl X2
6
1
40 3736 35 2726 22212019 1312 6 5 0|40 0
xe 6 i immg | mm g mm
4 1 9 5 11 7 7 6 41
Instruction | Operands | Opcode Ext(f/nson
C
mov/l rq=immg, 6 0

C.8 Immediate Formation

The following table shows, for each instruction format that has one or more immediates, how those immediates are

formed. In each equation, the symboal to the left of the equals is the assembly language name for the immediate. The sym-
bolsto the right are the field namesin the instruction encoding.

Table C-65. Immediate Formation

Instruction Immediate Formation
Format
A2 count, = Ctyg + 1
A3 A8127M30 immg = sign_ext(s << 7 | immy, 8)
A4 immq, = sign_ext(s << 13 | immgg << 7 | immyy,, 14)
A5 imm,, = sign_ext(s << 21 | immg << 16 | immgg << 7 | immy, 22)
A10 count, = (Ctyy > 2) ? reservedQP?: ctyy + 1
11 county, = (Ctog ==0) ?0: (ctyg==1) ?7: (Ctyg==2) ?15: 16
13 mbtype, = (mbt,. == 0) ? @brcst : (mbt,. == 8) ? @mix : (mbt,. == 9) ? @shuf :
(mbty == OXA) ? @alt : (mbt,, == OxB) ? @rev : reservedQP?
14 mhtypeg = mhtg,
16 countg = countsy,
18 countg = 31 — ccouny;
110 coung = coungy
111 leng = I_erbd +1
POs% = POy
leng = lengg + 1
2 pos; = 63 - CPog,

HP/Intel |IA-64 Instruction Formats C-57

IA-64 Application ISA Guide 1.0

Table C-65. Immediate Formation (Continued)

Instruction Immediate Formation
For mat
leng = lengg + 1
113 posg = 63 — cpog
immg = sign_ext(s << 7 | imgg, 8)
leng = lengg + 1
114 pos = 63 — Cpog,
imm;q = sign_ext(s, 1)
leny=leny+1
o pos = 63— cpogy
116 POg = POy
119 M37 immpy =i << 20 | immgg
123 mask; = sign_ext(s << 16 | magk<< 8 | mas§, << 1, 17)
124 immy, = sign_ext(s << 43 | imgh, << 16, 44)
M3 M8 M15 immy = sign_ext(s << 8 |i<< 7 | imyy 9)
M5 M10

immg = sign_ext(s << 8| i << 7 | imyy 9)
M17 inc = sign_ext(((s) ?-1:1)*gi==3) ? 1:1<< (4 —})), 6)

120 M20 M21 targefs = IP + (sign_ext(s << 20 | imyg, << 7 | immy,, 21) << 4)
M22 M23 targejs = IP + (sign_ext(s << 20 | inyg,, 21) << 4)
il = sol
M34 0 = sof — sol
r=sor<<3
M44 iMMyy =1 << 23 | bg << 21 | immq4
~ B1B2B3 targefs = P+ (sign_ext(s << 20 | imyg,, 21) << 4)
B9 immyq =i << 20 | immgg
F5

fclasg = fclasg. << 2 | fo

amask = amaslg,
F12
omask = omaslk,

F14 targets = IP + (sign_ext(s << 20 | imygy, 21) << 4)
F15 immpq =i << 20 | immgg

X1 immgy = immy; << 21]i<< 20 | imBp,

X2

iMmg, =1 << 63| immy << 22|} <<21|imm << 16 | immyg << 7 | imny,
a. Thisencoding causes an Illegal Operation fault if the value of the qualifying predicateis 1.

C-58 |A-64 Instruction Formats HP/Intel

	IA-64 Application Instruction Set Architecture Guide
	1 About the IA-64 Application ISA Guide
	1.1 Overview of IA-64 Application Instruction Set Architecture (ISA) Guide
	1.2 Terminology

	2 Introduction to the IA-64 Processor Architecture
	2.1 IA-64 Operating Environments
	2.2 Instruction Set Transition Model Overview
	2.3 PA-RISC Compatibility
	2.4 IA-64 Instruction Set Features
	2.5 Instruction Level Parallelism
	2.6 Compiler to Processor Communication
	2.7 Speculation
	2.7.1 Control Speculation
	2.7.2 Data Speculation

	2.8 Predication
	2.9 Register Stack
	2.10 Branching
	2.11 Register Rotation
	2.12 Floating-point Architecture
	2.13 Multimedia Support

	3 IA-64 Execution Environment
	3.1 Application Register State
	3.1.1 Reserved and Ignored Registers
	3.1.2 General Registers
	3.1.3 Floating-Point Registers
	3.1.4 Predicate Registers
	3.1.5 Branch Registers
	3.1.6 Instruction Pointer
	3.1.7 Current Frame Marker
	3.1.8 Application Registers
	3.1.9 Performance Monitor Data Registers (PMD)

	3.2 Memory
	3.2.1 Application Memory Addressing Model
	3.2.2 Addressable Units and Alignment
	3.2.3 Byte Ordering

	3.3 Instruction Encoding Overview
	3.4 Instruction Sequencing

	4 IA-64 Application Programming Model
	4.1 Register Stack
	4.1.1 Register Stack Operation
	4.1.2 Register Stack Instructions

	4.2 Integer Computation Instructions
	4.2.1 Arithmetic Instructions
	4.2.2 Logical Instructions
	4.2.3 32-Bit Addresses and Integers
	4.2.4 Bit Field and Shift Instructions
	4.2.5 Large Constants

	4.3 Compare Instructions and Predication
	4.3.1 Predication
	4.3.2 Compare Instructions
	4.3.3 Compare Types
	4.3.4 Predicate Register Transfers

	4.4 Memory Access Instructions
	4.4.1 Load Instructions
	4.4.2 Store Instructions
	4.4.3 Semaphore Instructions
	4.4.4 Control Speculation
	4.4.5 Data Speculation
	4.4.6 Memory Hierarchy Control and Consistency
	4.4.7 Memory Access Ordering

	4.5 Branch Instructions
	4.5.1 Modulo-Scheduled Loop Support
	4.5.2 Branch Prediction Hints

	4.6 Multimedia Instructions
	4.6.1 Parallel Arithmetic
	4.6.2 Parallel Shifts
	4.6.3 Data Arrangement

	4.7 Register File Transfers
	4.8 Character Strings and Population Count
	4.8.1 Character Strings
	4.8.2 Population Count

	5 IA-64 Floating-point Programming Model
	5.1 Data Types and Formats
	5.1.1 Real Types
	5.1.2 Floating-point Register Format
	5.1.3 Representation of Values in Floating-point Registers

	5.2 Floating-point Status Register
	5.3 Floating-point Instructions
	5.3.1 Memory Access Instructions
	5.3.2 Floating-Point Register to/from General Register Transfer Instructions
	5.3.3 Arithmetic Instructions
	5.3.4 Non-Arithmetic Instructions
	5.3.5 Floating-point Status Register (FPSR) Status Field Instructions
	5.3.6 Integer Multiply and Add Instructions

	5.4 Additional IEEE Considerations
	5.4.1 Definition of SNaNs, QNaNs, and Propagation of NaNs
	5.4.2 IEEE Standard Mandated Operations Deferred to Software
	5.4.3 Additions beyond the IEEE Standard

	6 IA-64 Instruction Reference
	6.1 Instruction Page Conventions
	6.2 Instruction Descriptions

	A Instruction Sequencing Considerations
	A.1 RAW Ordering Exceptions
	A.2 WAW Ordering Exceptions
	A.3 WAR Ordering Exceptions

	B IA-64 Pseudo-Code Functions
	C IA-64 Instruction Formats
	C.1 Format Summary
	C.2 A-Unit Instruction Encodings
	C.2.1 Integer ALU
	C.2.2 Integer Compare
	C.2.3 Multimedia

	C.3 I-Unit Instruction Encodings
	C.3.1 Multimedia and Variable Shifts
	C.3.2 Integer Shifts
	C.3.3 Test Bit
	C.3.4 Miscellaneous I-Unit Instructions
	C.3.5 GR/BR Moves
	C.3.6 GR/Predicate/IP Moves
	C.3.7 GR/AR Moves (I-Unit)
	C.3.8 Sign/Zero Extend/Compute Zero Index

	C.4 M-Unit Instruction Encodings
	C.4.1 Loads and Stores
	C.4.2 Line Prefetch
	C.4.3 Semaphores
	C.4.4 Set/Get FR
	C.4.5 Speculation and Advanced Load Checks
	C.4.6 Cache/Synchronization/RSE/ALAT
	C.4.7 GR/AR Moves (M-Unit)
	C.4.8 Miscellaneous M-Unit Instructions
	C.4.9 Memory Management

	C.5 B-Unit Instruction Encodings
	C.5.1 Branches
	C.5.2 Nop
	C.5.3 Miscellaneous B-Unit Instructions

	C.6 F-Unit Instruction Encodings
	C.6.1 Arithmetic
	C.6.2 Parallel Floating-point Select
	C.6.3 Compare and Classify
	C.6.4 Approximation
	C.6.5 Minimum/Maximum and Parallel Compare
	C.6.6 Merge and Logical
	C.6.7 Conversion
	C.6.8 Status Field Manipulation
	C.6.9 Miscellaneous F-Unit Instructions

	C.7 X-Unit Instruction Encodings
	C.7.1 Miscellaneous X-Unit Instructions
	C.7.2 Move Long Immediate 64

	C.8 Immediate Formation

